Reactive Collision Avoidance using Evolutionary Neural Networks
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Collision avoidance systems can play a vital role in reducing the number of accidents and saving human
lives. In this paper, we introduce and validate a novel method for vehicles reactive collision avoidance using
evolutionary neural networks (ENN). A single front-facing rangefinder sensor is the only input required by
our method. The training process and the proposed method analysis and validation are carried out using
simulation. Extensive experiments are conducted to analyse the proposed method and evaluate its
performance. Firstly, we experiment the ability to learn collision avoidance in a static free track. Secondly,
we analyse the effect of the rangefinder sensor resolution on the learning process. Thirdly, we experiment
the ability of a vehicle to individually and simultaneously learn collision avoidance. Finally, we test the
generality of the proposed method. We used a more realistic and powerful simulation environment
(CarMaker), a camera as an alternative input sensor, and lane keeping as an extra feature to learn. The
results are encouraging; the proposed method successfully allows vehicles to learn collision avoidance in
different scenarios that are unseen during training. It also generalizes well if any of the input sensor, the
simulator, or the task to be learned is changed.

1 INTRODUCTION

The task of designing control software for a self-
driving car is a complex task. The software should
concurrently tolerate (model) infinite number of
scenarios and special cases, and maintain and meet
reasonable software complexity and resources
constrains. Evolutionary algorithms can be a good
alternate to abstraction from such control challenges
(Sipper, 2006).

Collision avoidance is a feature that allows a
vehicle to move without colliding with other
vehicles. Vehicles can be cars, trains, ships,
airplanes, Unmanned Aerial Vehicles (UAV), or
various smart robots that have been generally
applied in modern laboratories nowadays (Liu et al.,
2013). In many applications, collision avoidance
systems play a vital role in reducing the number of
accidents and saving human lives. Reactive collision
avoidance controls the motion of the vehicle directly
based on the current sensor data to react to
unforeseen changes in unknown and dynamic
environments. The dynamic objects and the static
environment do not cooperate with the ego-vehicle
(vehicle that learns) to achieve collision avoidance.

Hence, reactive collision avoidance has a good
performance in real-time (Fu et al., 2013).

We introduce a novel method for vehicles
reactive collision avoidance using evolutionary
neural networks (ENN). A single front-facing
rangefinder sensor is the only input required by our
method. The sensor provides the neural network
with spatial proximity readings measured at multiple
horizontal angles. The neural network learns how to
control the vehicle steering wheel angle by directing
the vehicle such that it does not collide with the
dynamic environment. The neural network guides
the vehicle around the environment and a genetic
algorithm is used to pick and breed generations of
more intelligent vehicles. The training process and
the proposed method analysis and validation are
carried out using simulation.

We conducted six experiments to validate the
proposed method, analyse evaluate its performance.
The results are encouraging; the proposed method
successfully allows vehicles to learn collision
avoidance in different scenarios that are unseen
during training. The scenarios include a vehicle that
learns how to safely navigate (without doing
collision) through a free static track and to achieve



collision avoidance among independent dynamic
vehicles. Also, a group of randomly moving vehicles
successfully learns how to achieve collision
avoidance simultaneously. Also, our method is
proven to generalize well, it successfully allows
vehicle to also learn lane keeping, and using
different simulation environment which is more
realistic and powerful: CarMaker (CarMaker open
test platform for virtual test driving website).

The disadvantage of traditional methods over our
method are mainly: 1) they either depend on defined
set of scenarios, which are not adapted to new
conditions not programmed in the algorithm or 2)
they rely on handcrafted features that do not well
represent the real scenarios where the vehicle is
deployed. This creates the need to new Al systems
that learn from data, and in the same time
automatically identify the best representations of this
environmental data. Neural networks are well known
for their ability to learn representations of the data.

2 RELATED WORK

(Shaffer et al.,1992) in “Combinations of Genetic
Algorithms and Neural Networks: A Survey of Art”
provided an overview of the literature of combining
Neural Networks and genetic Algorithms drawing
out the common themes and the emerging wisdom
about what seems to work and what does not.

(Montana and L. Davis, 1989) in “Training
feedforward neural networks using genetic
algorithms” has explained that multilayered
feedforward neural networks possess a number of
properties which make them particularly suited to
complex pattern classification problems and showed
that Genetic Algorithms are well suited to the
problem of training feedforward networks as they
are good at exploring a large and complex space in
an intelligent way to find values close to the global
optimum.

(Durand et al, 1996) in “collision avoidance
using neural networks learned by genetic
algorithms” handled the collision avoidance problem
between two aircrafts with reactive techniques using
neural networks which was built by genetic
algorithms.

(Togelius and Lucas, 2006) in “Evolving robust
and specialized car racing skills” presented using
evolutionary algorithms how to create neural
network controllers for simulated car. They evolved
controllers that have robust performance over
different tracks and can be specialized to work better
on particular tracks.

(Mahajan and Kaur, 2013) in “Neural Networks
using Genetic Algorithms” introduced flexible

method for solving the travelling salesman problem
using genetic algorithms as they can be used to train
neural networks producing evolutionary artificial
neural networks.

(Fardin Ahmadizar et al, 2014) in “Artificial
neural network development by means of a novel
combination” developed a new evolutionary-based
algorithm to simultaneously evolve the topology and
the Connection weights of ANNs by means of a new
combination of grammatical evolution (GE) and
genetic algorithm (GA). GE is adopted to design the
network topology while GA is incorporated for
better weight adaptation. Please remember that all
the papers must be in English and without
orthographic errors.

3 SYSTEM OVERVIEW

A genetic algorithm (GA) (Vose, 1999) is an
evolutionary algorithm that can solve optimization
problems. It starts from a pool of randomly chosen
candidate solutions of the optimization problem
called a “population”. Usually, a pre-knowledge
about the problem constrains the randomness of
these solutions. Each candidate solution is called a
“chromosome”. The algorithm repeatedly (over
generations) modifies the population hoping for a
new generation with a better population. For that,
the algorithm uses an application-dependant “fitness
function” that estimates the goodness of each
chromosome. At each step, the genetic algorithm
randomly selects individuals from the previous
generation’s population and uses them as parents to
produce the children for the new generation. The
concept of producing children from a set of selected
parents is based on a natural selection process that
mimics biological evolution. Hence, over successive
generations, the population "evolves" toward an
optimal solution.

Artificial neural networks can be looked at as an
optimization problem looking for the best weights
achieving some task. This is why a genetic algorithm
can be used to train a neural network (Schaffer et al.,
1992). Evolutionary Neural Networks,
Neuroevolution, or neuro-evolution, is a form of
machine learning that uses evolutionary algorithms
to train artificial neural networks, in other words,
estimating the weights of the neural network. It is
most commonly applied in the areas of artificial life
and intelligent computer games, and hence, has
potential contributions towards self-driving vehicles.
The chromosome format is chosen to be the vector
of real numbers with a sequence of all of the neural
network weights. The sequence is sorted layer by
layer. The weights of each layer are sorted such that



all of the weights coming out of a neuron are
consecutive. The bias node is considered the last
node in each layer. Figure 1 shows an example for a
2x3x2 neural network and its chromosome.

Chromosome:
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Figure 1: Example of a 2x3x2 neural network and its
chromosome. B1 and B2 represent the network biases.

We developed a simulation setup to evaluate the
fitness of each chromosome in a generation. For
most of experiments related to collision avoidance,
the vehicle lifetime before its first collision is a
reasonable metric for the fitness. Genetic algorithm
is used to pick and breed generations of more
intelligent vehicles. The vehicle uses a rangefinder
sensor that calculates N intersections depths with the
environment and then feeds these N values as inputs
to the neural network. The inputs are then passed
through a multi-layered neural network and finally
to an output layer of 2 neurons: a left and right
steering force. These forces are used to turn the
vehicle by deciding the vehicle steering angle.
Figure 2 shows the proposed system overview for
our method during the system training phase.
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Figure 2: System overview during training phase.

Once trained, the neural network is able to
generate steering commands from the input
rangefinder sensor readings. Figure 3 shows this
configuration.

Rangefinder ENN - Dr.ive by wire
Sensor interface

Figure 3: The trained network is used to generate steering
commands from a single front-facing proximity sensor.

4 SIMULATION SETUP

For all vehicles in our simulation environment, we
use a bicycle model as shown in figure 4. Given the
vehicle speed and simulation time tick Af, the
travelled distance L per a time step is calculated.
Given wheel base, vehicle position P, heading 6, and
distance travelled per time step L, the new vehicle
position P,,,, and heading 6,,,, are calculated.

Steering ™,
“ Angle

Travelled Distance in At ° :

Figure 4: Simple 2D vehicle steering physics.

For simplicity, vehicles are chosen to move with
fixed speed and sensor noise is neglected. At
simulation start, the vehicles are positioned
equidistant from each other. At each collision
detected by the simulator, it’s important to identify
the vehicle responsible for the collision as shown in
figure 5. When a collision happens, the simulator
tries to answer the question: Would crash still
happen if a vehicle X is the only vehicle that moved
at collision time step? If the answer is yes, vehicle X
is determined as responsible for that collision.

X, S

Both vehicles are identified Red vehicle is identified as

as collision cause collision cause

Figure 5: Determining which vehicle caused collision to
happen. Two examples with two vehicles before and after
the collision time step.



S EXPERIMENTAL WORK

Several experiments are conducted to evaluate our
learning method. The main objective is to inspect the
feasibility of achieving a reactive collision
avoidance system using our proposed method.
Initially, an elementary, and relatively easier,
experiment is conducted. The objective of this
experiment is to examine the capability of a vehicle
to learn the task of self-navigation through a static
environment that does not include any dynamic
objects. We believe that this task is less hard than
the collision avoidance task because the ego-vehicle
does not have to deal with the unknown movement
of dynamic objects.

A three layer ANN, with sigmoid activations for
all neurons, is empirically chosen to be used for all
of our experiments. It’s noted that the experiments
results don’t change if the number of layers is
changed, but sometimes you obtain the same result
faster. The higher the number of hidden layers, the
better representation of the data the network can
achieve. But at the same time, this leads to a more
complex optimization problem that is harder and
slower for GA to solve. Our GA uses a population of
200 chromosomes where mutation probability is 0.1,
crossover probability is 1 and the crossover site
follows a normal distribution with a mean of 0.95
and a standard deviation of 0.05. The selection is
based on tournaments of size 10 candidates and
children of next generations always replace their
parents. The fitness function is chosen to be the
vehicle lifetime navigating the environment (in time
steps) before its first collision with the static
environment boundaries or other dynamic vehicles.

The experimental work results are encouraging
and validate the effectiveness of the proposed
method.

5.1 Learning Navigation

The objective of this experiment is to validate the
ability of our method to achieve self-navigation. The
vehicle should learn how to travel from one position
to another without colliding with a static
environment that does not include any dynamic
objects. The environment is represented by a track
that is formed by horizontal and vertical edges.
Figure 6 shows the experiment track.

Our experimental results show that navigation is
learnt in less than 50 generations. One interesting
observation is that the vehicle took 12 generations to
learn how to successfully turn in the first critical
location A circled in red in figure 6. Once the vehicle
learns this manoeuvre, it achieves huge learning
progress represented by a significant increase in best

chromosome’s fitness. The vehicle implicitly learns
how to drive through all the following tricky turns in
the track. This fact is demonstrated in figure 7.
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Figure 6: Experiment track.
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Figure 7: Self-navigation learning curve in a narrow track.

We can observe that the fitness diminishes when
reaching critical location B circled in green in figure
6, the reason is that the vehicle modifies its
behaviour in order to learn the 180° turn (location B)
but what it learns negatively affect its ability to pass
the previous critical location A, so the fitness
oscillates until the vehicle learns to avoid such
behaviour but it still unable to make the 180° turn. In
that experiment, the track is too narrow, relative to
the vehicle dimensions, which makes such move
very hard to learn. Widening the track enables the
vehicle learn how to turn by 180° and still be able to
pass critical location A at the same time as
demonstrated in figure 8.
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Figure 8: Self-navigation learning curve in a wide track.

As shown in figure 8, a very high fitness is
reached as the vehicle learns to navigate back and
forth through the track without any collisions for



hours. The wvehicle also is able to navigate
successfully through other different tracks that are
unseen during training.

5.2 Sensor Resolution

The objective of this experiment is to inspect the
influence of the input rangefinder sensor resolution
on the learning process. The same previous
experiment is performed five times with different
numbers number of sensor beams. The angle
between adjacent beams is equal. The sensor
horizontal range is chosen 180° in our experiment.
As shown in figure 9, using a sensor of a single
front-facing beam prevents the vehicle from learning
and reaching an accepted fitness as the input data is
insufficient for learning. On the contrary, a higher
sensor resolution (three beams or more) enables the
vehicles to evolve and reach a satisfying fitness.
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Figure 9: Self-navigation learning curve for different
number of sensor beams.

It’s observed that using a moderate number of
beams achieved almost the same fitness as when
using a larger number of beams but in a fewer
number of generations. As in figure 9, the five
beams’ experiment is the fastest to reach an accepted
fitness. This occurred because reducing the number
of sensors produces shorter chromosomes and hence
having a fewer number of parameters and a less
complex optimization problem to solve.

5.3 Individual Collision Avoidance
among Dynamic Vehicles

In this experiment, we inspect the feasibility of our
method in enabling a vehicle to navigate collision-
freely among multiple different dynamic vehicles.
The environment is represented by a rectangular free
space area containing eight different vehicles
moving freely as shown in figure 10.

Each vehicle is initialized with random weights
for their ANN and random starting headings then the
learning process is applied on only a single vehicle

to learn avoiding collisions with the environment
boundaries and the other randomly moving vehicles.

We found that the learning vehicle (ego-vehicle)
has learned a deceptive behaviour for survival by
rotating around itself to avoid interactions with the
other vehicles. In order to learn a proper collision
avoidance behaviour, such rotation is detected by the
simulator and the responsible chromosome is
penalized by a zero fitness.

Figure 10: Ego-vehicle survives by rotating around itself.

After each collision occurs by the ego-vehicle,
the fitness of the chromosome driving the neural
network is estimated and a new chromosome is set
to be evaluated. In order to achieve fair evaluation
for each chromosome, not only the ego-vehicle
should be reset but the whole simulation. Ignoring
the reset of the simulation may position the ego-
vehicle in tough scenario for collision avoidance at
the beginning of evaluation. This may cause a good
chromosome to be assigned a low fitness.

Each plot in figure 11 shows the learning curve
of the ego-vehicle among uncontrolled dynamic
vehicles. In each figure, a different movement
strategy for the uncontrolled dynamic vehicles is
adopted, and four runs of the same experiment are
conducted. The x-axis represents the number of the
generation and the y-axis represents the fitness
achieved at each generation.
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Figure 11: Each plot of the four represents a different
strategy. In each strategy, the same experiment is
conducted 4 times starting from different random initial
neural network weights, each run is in a different color.

The learning curves demonstrate the ability of
our method to enable the vehicle to learn collision
avoidance individually among dynamic vehicles.



5.4 Individual Collision Avoidance
Knowledge Accumulation

The objective of the experiment is to examine the
knowledge accumulation ability of our method. In
other words, the capability of the ego-vehicle to
learn avoiding collisions in new strategies without
negatively affecting the performance achieved in
previously-learned strategies.

Firstly, as shown in Table 1, the ego-vehicle
doesn’t achieve efficient collision avoidance when
tested on an unseen strategy. Learning on a single
strategy is not sufficient for the ego-vehicle to learn
general collision avoidance behaviour.

Table 1: Individual collision avoidance performance tested
on unknown strategies compared to the performance tested
on the strategy seen during training. The numbers in the
table represents the best chromosome fitness.

Deployment
Str:
Training sy 1 2 3 4
Strategy
1 2115 544 558 432
2 595 2305 136 931
3 159 351 3050 460
4 559 334 1080 2560
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Figure 12: Color map visualization for fitness achieved in
different strategies.

5.4.1 Incremental Evolution

As a step towards achieving general collision
avoidance behaviour, the ego-vehicle should be
trained on more than one strategy. Learning in a new

strategy should not negatively affect the
performance  achieved in  previously-learned
strategies.

In order to achieve this objective, incremental
evolution (Togelius and Lucas, 2006) is used. A
vehicle learns to avoid collisions in one strategy and
when it reaches an accepted fitness, a new strategy is
added to the learning process so that the proposed
solution is now evaluated on both strategies, then the
fitness is averaged. This process is then repeated
with new strategies added until the vehicle learns to
survive in all introduced strategies. Table 2 shows
the results of this experiment. The training stopping

criteria for each strategy is when its fitness exceeds
80% of a predefined threshold for accepted fitness.

Table 2: Fitness achieved by the ego-vehicle during
different incremental evolution iterations. A new strategy
is added to the learning process at each iteration.

Deployment
. Strategies 1 2 3 AYerage
lLt::ltlle Fitness
1 1936 - - 1936
2 2380 | 1452 _ 1916
3 1970 2123 1467 | 1853.3

5.5 Simultaneous Collision
Avoidance

The objective of this experiment is to achieve a
collision free environment, where all moving
vehicles simultaneously learn to avoid collisions
with each other and with static environment. An
evolved vehicle, that learned to navigate collision-
freely, is used to boost the behaviour of the other
vehicles through two different approaches as
detailed in the coming two subsections. The results
are obtained by running the simulator to train for
100 seconds in four different strategies.

5.5.1 Broadcasting the Winning Chromosome

In this approach, the evolved solution represented by
the winning chromosome is broadcasted to all the
vehicles to use. Table 3 compares the average
number of collisions per second for all the vehicles
before versus after learning.

Table 3: Comparison between the number of collisions per
second before versus after learning.

Initial Behaviour After Learning
[collisions/sec] [collisions/sec]
Strategy 1 16.33 3.90
Strategy 2 20.05 4.59
Strategy 3 16.82 8.00
Strategy 4 13.49 12.27

In reasonable simulation time, the collision
avoidance performance highly increases, but not for
all the strategies.

5.5.2 Broadcasting the Most Evolved
Generation

In order to achieve better collision avoidance
performance, learning process should not only be
applied on a single vehicle, but all vehicles should



simultaneously learn. Instead of assigning the
winning chromosome directly to each vehicle, we
can assign the evolved population to each vehicle to
start learning using it. This approach results in a
customized solution for each different vehicle and
our results are promising as the number of collisions
is reduced by around 90% on the average.

Table 4: Comparison between the number of collisions per
second before versus after learning.

Initial Behaviour After Learning

[collisions/sec] [collisions/sec]
Strategy 1 16.33 2.11
Strategy 2 20.05 1.58
Strategy 3 16.82 1.76
Strategy 4 13.49 1.90

5.6 Lane Keeping

The main objective of this experiment is to validate
the generality of our method. A more realistic
simulation environment is used. As shown in figure
13, the input is no longer readings from a proximity
sensor, but lane markings from a camera. The
objective is to achieve the lane keeping active safety
feature given the detected driving lanes.

Figure 13:
experiment

CarMaker simulation for lane keeping

The results prove that our method generalizes
well. The vehicle is left to learn on simulated roads
for around 10 hours before it successfully learns to
keep in a lane for many hours. It implicitly learnt
many lane shape cases instead of memorizing a set
of hardcoded scenarios. Our method successfully
allows vehicle to learn different features other than
collision avoidance like lane keeping, and using
more realistic simulation environment.

6 CONCLUSIONS

This paper proposes and validates a novel method
for vehicles reactive collision avoidance using ENN.
To evaluate the proposed method, extensive
experiments of varying conditions and objectives are
conducted. The results demonstrated in the paper

reflect the potential for our proposed method. The
vehicle learns to drive collision freely in a static
environment and among dynamic objects. Promising
progress is achieved in developing general collision
avoidance behaviour. Moreover, our lane keeping
experiment shows the capability of our method to
operate  efficiently in  realistic  simulation
environments. The future work should focus on
deploying the conducted experiments in more
realistic and complex simulation environments and
to upgrade the GA operators to further improve our
method’s performance.
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