
LLM4Laser: Large Language Models Automate the Design of Lasers

Renjie Li1,2*, Ceyao Zhang1*, Sixuan Mao1, Xiyuan Zhou1,

Feng Yin1, Sergios Theodoridis3, Zhaoyu Zhang1²

1The Chinese University of Hong Kong, Shenzhen
2University of Illinois Urbana-Champaign, 3University of Athens

Abstract

With the rapid evolution of global autonomous driving tech-
nology, the demand for its core sensing hardware, Light De-
tection and Ranging (LiDAR), is escalating. As the light
source part of the LiDAR system, lasers, particularly the
cutting-edge Photonic Crystal Surface Emitting Lasers (PC-
SEL), have correspondingly attracted extensive research at-
tention. The conventional manual design and optimization of
PCSEL typically require expertise in semiconductor physics
and months of dedicated effort to achieve satisfactory re-
sults. While AI-driven approaches can expedite this pro-
cess, laser designers still need to invest time in learning the
AI algorithms involved. Meanwhile Large Language Mod-
els (LLMs), leveraging their powerful reasoning abilities, can
effectively comprehend natural language and provide con-
structive feedback in multi-turn dialogues. They have already
demonstrated potential to assist humans in scientific fields
such as robotics design and chemical discovery. A question
naturally arises is: Can LLMs transform the lasers design
process? This paper proposes a novel human-AI co-design
paradigm to show that LLMs can guide the laser design
and optimization process both conceptually and technically.
Specifically, by simply having conversations, GPT assisted
us with writing both Finite Difference Time Domain (FDTD)
simulation code and deep reinforcement learning (RL) code
to acquire the optimized PCSEL solution, spanning from the
proposition of ideas to the realization of algorithms. Given
that GPT will perform better when given detailed and specific
prompts, we break down the PCSEL design problem into a se-
ries of sub-problems and converse with GPT by posing open-
ended heuristic questions rather than definitive commands.
We achieved a significant milestone towards self-driving lab-
oratories, that is, a fully automated AI-driven pipeline, for
laser design and production.

Introduction
Trends of design automation (i.e., human out of the loop)
in the integrated circuit (IC), nanotechnology, and semicon-
ductor industries (Mirhoseini et al. 2021; Zhang et al. 2020b;
Chen et al. 2021b) are emerging rapidly. Aided by artifi-
cial intelligence (AI), machine automation is beginning to
replace conventional IC design and fabrication processes in-
volving humans that had existed for over half a century.

*These authors contributed equally.
²Corresponding author: zhangzy@cuhk.edu.cn

Copyright © 2025, Authors All rights reserved.

The nanophotonics industry (Almeida et al. 2004; Altug, En-
glund, and VučkoviÂc 2006; Thomson et al. 2016), however,
has not experienced comparable level of automation due to
its unique fabrication precision requirements (Hocevar et al.
2012; Kim et al. 2014) and relatively complex theoretical
models (Xie et al. 2021; Zeng et al. 2020). As an important
example of nanophotonics, the design of Photonic Crystal
Surface Emitting Lasers (PCSELs; Hirose et al. 2014; Noda
et al. 2017; Yoshida et al. 2019), demands rigorous physical
modeling and calculations with Finite Difference Time Do-
main (FDTD) or Finite Element Analysis (FEA) simulation
tools. Moreover, the inverse design and optimization (Ma
et al. 2021; Molesky et al. 2018; So et al. 2020) of PCSEL
typically suffers from three aspects: the one-to-many map-
ping and non-convexity nature, a high demand for expert
knowledge in semiconductor physics and theoretical mod-
eling/simulation (and thus human involvement), and a lack
of ready-to-use machine learning algorithms/packages. The
above challenges prohibit an end-to-end automated design
pipeline for PCSELs and other advanced laser devices alike.

Luckily, recent advancements in machine learning (Good-
fellow, Bengio, and Courville 2016; Mnih et al. 2015;
Theodoridis and Koutroumbas 2006) and optimization al-
gorithms (Luo et al. 2010; Hale, Yin, and Zhang 2008;
Milzarek and Ulbrich 2014) have propelled the progress of
automated nanophotonics design. Early in the 90s, heuristic,
evolutionary (Hegde 2019), and gradient-based (Zhang et al.
2020a) optimization algorithms began to emerge prolifically.
Key algorithms include Newton’s method (Milzarek and Ul-
brich 2014), particle swarm (Ma and Li 2020), genetic al-
gorithm (Ren et al. 2021), Bayesian optimization (Shahriari
et al. 2015), and simulated annealing (Bertsimas and Tsitsik-
lis 1993) etc. These algorithms provide a new way of think-
ing when facing these non-convex optimization problems
and lay a solid foundation for continued research. But the
challenge remains with heavy human involvement. To solve
this, around 2012, researchers proposed deep learning (DL;
Krizhevsky, Sutskever, and Hinton 2012; Goodfellow, Ben-
gio, and Courville 2016) frameworks that take advantage of
an abundance of training data and neural network’s inference
ability. These DL models greatly boosted the efficiency of
nanophotonic inverse design, pushing the possibility of au-
tomated design into a new stage (Jiang, Chen, and Fan 2021;
So et al. 2020; Li et al. 2022; Asano and Noda 2018; Li et al.

ar
X

iv
:2

1
0
4
.1

2
1
4
5
v
3

[p

h
y
si

cs
.o

p
ti

cs
]

 2
3
 N

o
v
 2

0
2
5

https://arxiv.org/abs/2104.12145v3

AI Algorithm

Simulation modelLLM

O
ptim

ize

G
en

er
at

e
co

de

Generate
code

Layout &

Tape-out
Photonic device

Fabrication

Figure 1: Long-term vision of this work: LLMs for automated PCSEL design and optimization pipeline that enables self-driving
laboratories. The human facilitator prompts the LLM to generate FDTD code for simulating the PCSEL structure and AI (e.g.,
reinforcement learning (RL)) code for subsequent optimizations of the PCSEL model. The FDTD code is written with the MIT
meep (Oskooi et al. 2010) package. The AI optimization process with RL is built upon an earlier work’s L2DO framework (Li
et al. 2023b). The final optimized PCSEL design (shown on far right) is then converted to CAD layout and prepared for tape-out
and foundry fabrication.

n-electrode

n-substrate

n-cladding layer

active layer (MQW)

blocking layer

Photonic crystal layer

p-cladding layer

p-electrode (hidden)

laser emission

Square lattice

PhC pattern

Figure 2: Photonic Crystal Surface Emitting Laser (PCSEL),
with abundant applications in sensing, LiDAR, and telecom-
munications.

2021). Circa 2023, a new DL framework based on RL (e.g.,
deep Q-learning (DQN) (Mnih et al. 2015)), called Learn-
ing to Design Optical-Resonators (L2DO; Li et al. 2023b),
provides the solution for inverse design of photonic crystal
nanocavities without human intervention. With two orders of
magnitude higher sample efficiency compared to supervised
learning, L2DO has preliminarily realized photonics design
automation on an algorithmic level. However, since both the
simulation code and DL code in L2DO were still created by
the human designer, we were still a distance away from the
fully automated photonic design.

Recently, as LLMs has become dominant in the field of
AI, a limited handful of researchers have found the poten-
tial for using LLMs in hardware design and implementation
at an early time. In 2020, researchers utilized an improved
GPT-2 model called ºDAVEº for Verilog code snippets gen-
eration and output evaluation (Pearce, Tan, and Karri 2020),
which is a crucial component in the IC design pipeline.

A more recent model named ºChip-chatº (Blocklove et al.
2023) came out in 2023, which is an LLM-driven method
for IC Verilog code generation and is one of the first wholly-
AI-written Hardware Description Language (HDL) for chip
tape-out. Meanwhile, LLMs have also contributed signifi-
cantly to the design and control of robots. Researchers have
shown the guidance value of LLM in a robotic gripper de-
sign process (Stella, Della Santina, and Hughes 2023), both
conceptually and technically. By means of simply convers-
ing with GPT, they successfully designed a robotic gripper
capable of reaping the tomato plant. Last but not least, LLM-
based agent also shows great planning ability in both game
AI (Wang et al. 2023; Zhang et al. 2023) and embodied
robotic AI (Ahn et al. 2022) tasks.

In this work, we propose a new human-AI co-design
paradigm for PCSELs as illustrated in Figure 1 and demon-
strate the practical implications of LLMs for laser design
methodologies. Specifically, we explored and verified the
potential of applying LLMs to machine learning-based de-
sign and optimization of PCSELs, during which we seek to
maintain as little human involvement as possible. By simply
having conversations spanning from the proposition of ini-
tial ideas to the implementation of final algorithms, GPT-4
assisted us with writing FDTD simulation code and deep RL
(e.g. DQN) code to acquire the optimized PCSEL solution.
The optimized PCSEL meets the following figure of merit
(Hirose et al. 2014): single-mode, high-beam quality, large-
area, and small-divergence angle. A high-level overview of
the end-to-end design pipeline is illustrated in Figure 1.
Given that GPT will perform better when given detailed and
specific prompts, we break down the PCSEL design prob-
lem into a series of sub-problem modules and converse with
GPT by strictly posing open-ended heuristic questions rather
than definitive commands. These rules are summarized and

proposed as five golden tricks. This paper shows that LLMs,
such as ChatGPT, can guide the laser design and optimiza-
tion processes, on both the conceptual and technical level.
All in all, we achieved a significant milestone towards an
automated end-to-end laser design and optimization pipeline
with minimal human intervention.

Background

Photonic Crystal Surface Emitting Lasers
(PCSEL)

Among lasers, PCSELs (Hirose et al. 2014; Noda et al.
2017; Yoshida et al. 2019) represent an avant-garde technol-
ogy that integrates the advantages of photonic crystals (PhC;
Quan, Deotare, and Loncar 2010) and Vertical Cavity Sur-
face Emitting Lasers (VCSELs; Chang-Hasnain 2000). PC-
SELs emit high-quality laser beam vertically and find broad
applications in sensing, detection, and telecommunications.

Methods

Objective overview

In this article, we investigate the potential of an LLM-
based automated PCSEL design and optimization pipeline,
as shown in Figure 1. The target metrics or figures of merit
(FOM) of the PCSEL to be satisfied are discussed in Ap-
pendix B and C, which were set according to target ap-
plication specifications and scenarios with full considera-
tion of the physical limits of PCSEL lasing. For example,
the wavelength of 1310 nm is important for applications
in telecommunications and satellite communications, a high
beam quality and a suitably high Q-factor is important for
applications like autonomous driving, metal machining/ma-
terial processing, and medical surgeries, and a small di-
vergence angle is important for achieving high beam qual-
ity, small focal spot, and long-distance light propagation. In
this initial demonstration, actual tape-out will not be imple-
mented. And due to computational limitations, our PCSEL
device has a side length of 2.0 µm with periodic boundary
conditions.

Human-AI co-design paradigm

The human-AI co-design paradigm is more clearly illus-
trated in Figure 3. We divide the design process into three
steps: 1) conceptualization, 2) code generation and debug-
ging, and 3) simulation and optimization. Due to the limi-
tation of the status quo of LLMs, the AI agent usually can-
not give out the perfect solution all at once. Therefore, the
human needs to act as a liaison to help guide/facilitate the
design work while simultaneously bearing in mind that ex-
cessive human involvement could compromise the integrity
of the AI agent’s decisions. So for example, if a large por-
tion of the design task is dominated/controlled by humans, it
does not reflect the human-AI co-design paradigm and thus
should be avoided as much as possible. Overall, in our ex-
perience, the design flow should observe the following rules
and practice to obtain optimal feedback from the LLM.

First, the whole design process should start with the hu-
man providing an open-ended question to GPT, rather than

giving definitive commands. This is the beginning of an im-
portant conceptualization process, where the human stimu-
lates the LLM to brainstorm and generate creative ideas. For
example, you can start a conversation by ºWhat is the most
sought-after laser nowadays?º or ºWhat are some good op-
timization algorithms to use in hardware design?º Subse-
quent conversations will continue by gradually guiding GPT
to arrive at a specific solution for this conceptual question.
Sample Q&A rounds are demonstrated in the left column of
Figure 3. Once we get to the code generation and debug-
ging stage, questions can become more specific and tech-
nical, such as ºCan you help me design a high-power and
large-area PCSEL model using an FDTD algorithm written
in Python?º or ºCan you help me improve an existing deep-
Q learning code implemented with experience replay that’s
written with PyTorch?º

Second, humans should respect the self-correcting mech-
anism of GPT rather than directly pointing out the problem-
s/errors it has. In the conversations, there might be times
when the answers given by LLMs are self-contradictory or
simply wrong. This is attributable to GPT’s insufficient un-
derstanding of the problem to be solved, which usually hap-
pens at the early stages of a conversation. To properly re-
spect the self-correcting mechanism of GPT, one should re-
port the error by responding ºyou have just mentioned XXX,
and I hope you could think twice about this and regener-
ate your answerº or ºare you sure XXX is the correct an-
swer? Please elaborateº rather than ºlines XXX and XXX
of the code you generated are wrongº or ºfix the XXX func-
tion/method in the code for meº. In the code-generating part,
these kinds of mistakes will be especially common. In our
experience, it usually takes several conversational iterations
before the code finally becomes bug-free and ready to run.
Additionally, when debugging the code it is not advised to
point out the precise location of errors for GPT; the proper
way is to copy the error message from the terminal and let
AI do the modification itself. A demonstration of this inter-
active debugging process is shown in the middle column of
Figure 3.

Based on the above practical rules, we propose and rec-
ommend to the readership the following five golden tricks
for successful human-AI co-designs using LLMs:

1. Open-ended Question Start: Begin design by posing
broad queries to GPT, sparking creative brainstorming
and conceptualization. For instance, ºWhat’s the lat-
est sought-after laser?º or ºOptimization algorithms for
hardware design?º

2. Divide and Conquer: GPT performs better when given
detailed questions and information, so break down the
design problem into a series of sub-problems.

3. Technical Advancement: Transition to specific, techni-
cal queries during code generation and debugging, like
ºDevelop a high-power PCSEL model using FDTD al-
gorithm in Python.º

4. Respect Self-Correction: Honor GPT’s self-correcting
capacity by prompting reconsideration of inaccurate an-
swers. Instead of direct corrections, encourage reflection
and elaboration for refinement.

Figure 3: LLM4Laser: A novel Human-AI co-design paradigm for applying LLMs to PCSEL design and optimization. A pic-
torial overview of the discussions and interactions between the human facilitator and the LLM, with the questions prompted by
the human and the answers/solutions provided by the LLM (GPT). The process is divided into three steps: left column: con-
ceptualization, middle column: code generation and debugging, and right column: simulation and optimization. Optimization
via DQN is run on high-performance computing (HPC) clusters for improved computational speed and output.

5. Effective Debugging Approach: During code debug-
ging, provide error messages for GPT to address. Re-
frain from pinpointing error locations; allow GPT to au-
tonomously modify code based on terminal output.

Conceptualization with the LLM The conceptualization
step is for the AI to have a general understanding of the un-
derlying problem so that the AI can choose proper methods
and algorithms for more detailed prompts down the road.
We kick off the conversation by raising heuristic questions
ºWhat constitutes a ºgoodº PCSEL laser?º and ºLet us de-
sign a PCSEL together, How do you think we should start?º,
and the LLM provides us with a general design pipeline
by saying ºhere is a general procedure to get started withº
where the design problem is broken down into sub-modules
such as ºunderstanding the basics of PCSELº, ºmaterial se-
lectionº, ºdesigning photonic crystal structureº etc. Then we
take a further step by asking: ºI have understood the basics
of PCSEL, now what are some important factors to consider
when designing PCSELs?º The LLM then points out what
to look out for when designing PCSELs. Some sample chats
are shown in the left column of Figure 3. We then prompted
another heuristic question about choosing optimization algo-
rithms. GPT-4 eventually provides the answer: ºIn this case,
reinforcement learning and Bayesian optimization might be
the most suitable for your problemº after we’ve clarified our
optimization objectives and constraints. When we think that
GPT-4 has, for the most part, understood what we are trying
to do, we ask it: ºCould you generate an appropriate code
skeleton according to the above conversation? Please note
that the FDTD should be implemented with meep and RL
should be with PyTorch.º As a result, GPT-4 gives us a code

skeleton for FDTD simulation using meep (Oskooi et al.
2010) and DQN using PyTorch, respectively. The problem
has now evolved to a matter of expanding these code skele-
tons to full-blown scripts, meaning that our work is moving
to the next stage for code generation.

Code generation and improvement In previous step, we
have divided the coding problem into two modules (FDTD
and DQN) and obtained the initial code skeletons of both
modules. In this step, we will complete, debug, and improve
our existing code skeletons, which is an essential step of the
whole PCSEL design process. This step is pictorially illus-
trated in the middle column of Figure 3.

For generating an FDTD simulation code from a skele-
ton script, we need to provide the LLM with more specific
and concrete physical parameters concerning the PCSEL.
For instance, we may require that our PCSEL has five lay-
ers, called ºn-substrate layerº, ºn-cladding layerº, ºactive
layerº, ºphotonic crystal layerº, and ºp-cladding layerº re-
spectively, as well as 50 × 50 air holes in the PhC layer. It
is worth mentioning that the value of parameters, such as
the refractive index and the thickness of each layer, could
be randomly initialized due to the DQN optimization pro-
cess that we are going to implement subsequently. In the
conversations, we assigned those values in line with the PC-
SEL model that we have built in the past. In addition, we
also provided requirements for boundary conditions, mesh-
ing resolution, refractive indices, etc. After we provided the
concrete physical parameters, GPT-4 expanded our code by
completing the PCSEL geometry and simulation settings, as
shown in Figure 4. Additionally, the flux and far-field mon-
itors are added according to our requirement for calculating

Define the 3D PCSEL geometry with different layers

geometry = [mp.Block(mp.Vector3(mp.inf, mp.inf, t_substrate),

center=mp.Vector3(0, 0, -z_total/2 + t_substrate/2),

material=mp.Medium(epsilon=n_substrate**2)),

mp.Block(mp.Vector3(mp.inf, mp.inf, t_n_cladding),

center=mp.Vector3(0, 0, -z_total/2 + t_substrate + t_n_cladding/2),

material=mp.Medium(epsilon=n_n_cladding**2)),

mp.Block(mp.Vector3(mp.inf, mp.inf, t_active),

center=mp.Vector3(0, 0, -z_total/2 + t_substrate + t_n_cladding +

t_active/2),

material=mp.Medium(epsilon=n_active**2)),

mp.Block(mp.Vector3(mp.inf, mp.inf, t_photonic_crystal),

center=mp.Vector3(0, 0, -z_total/2 + t_substrate + t_n_cladding + t_active

+ t_photonic_crystal/2),

material=mp.Medium(epsilon=n_photonic_crystal**2))] + holes + [

mp.Block(mp.Vector3(mp.inf, mp.inf, t_p_cladding),

center=mp.Vector3(0, 0, -z_total/2 + t_substrate + t_n_cladding + t_active

+ t_photonic_crystal + t_p_cladding/2),

material=mp.Medium(epsilon=n_p_cladding**2))]

Create the air holes in the PhC layer

for i in range(n_holes):

for j in range(n_holes):

Create a cylindrical hole at this position

hole = mp.Cylinder(radius=hole_radius, height=t_photonic_crystal,

center=mp.Vector3(i*lattice_constant - cell_size.x/2,

j*lattice_constant - cell_size.y/2, 0),

material=mp.Medium(epsilon=1))

geometry.append(hole)

Initialize the simulation

sim = mp.Simulation(cell_size=cell_size,

boundary_layers=pml_layers,

geometry=geometry,

sources=sources,

resolution=10)

Define a box around the source for flux computation

flux_box = mp.FluxRegion(center=mp.Vector3(), size=mp.Vector3(10, 10, z_total))

Add the DFT flux object to the simulation

flux = sim.add_flux(frequency, 0, 1, flux_box)

Run the simulation

sim.run(until=200)

near field Poynting vector in z direction

(x, y, z, w) = sim.get_array_metadata(dft_cell=resonance_z)

Pz = []

i = 0

for _ in flux.freq:

(Ex, Ey, Hx, Hy) = [sim.get_dft_array(flux, c, i) for c in [mp.Ex, mp.Ey, mp.Hx, mp.Hy]]

flux_density = np.real(np.conj(Ex) * Hy - np.conj(Ey) * Hx) # array

flx = np.sum(w * flux_density) # scalar

Pz.append(flx)

i += 1

Compute the total emitted power

emitted_power = mp.get_fluxes(flux)

Define where to perform the Harminv analysis

harminv_regions = [mp.Harminv(mp.Ez, mp.Vector3(0,0,0), frequency, 0.1*frequency)] # 10%

bandwidth

Reset the fields and use the same geometry and sources for the Harminv analysis

sim.reset_meep()

sim.change_sources(sources)

sim.run(mp.after_sources(*harminv_regions),

until_after_sources=200)

for mode in sim.harminv_data: #calculate Q-factor

print(f"Frequency: {mode.freq} Q factor: {mode.Q}")

V = sim.modal_volume_in_box(box=vol) #calculate the modal volume

Figure 4: Code generated by GPT-4 for FDTD simulation of PCSEL using the meep package. Left: geometry setup section,
right: simulation setup and calculations section. The code shown here is the final version that runs successfully after several
rounds of debugging.

the emitting power, modal volume, and divergence angle; the
Harminv monitor is added for calculating the Q-factor. Some
of these monitors and their calculations are shown in Fig-
ure 4. Now that the FDTD simulation code has been written,
the next step is to proceed with debugging and fine-tuning
until the code finally runs successfully. As the middle col-
umn of Figure 3 and Figure 7 shows, we iteratively test-run
the code on our local computer and transfer the error mes-
sages to GPT for debugging, repeating this process until the
code becomes bug-free. In our experience, most bugs can be
eliminated within five iterations.

Next, we generated the DQN code for RL-based optimiza-
tion of PCSELs (Figure 6). As a core component of the DQN
algorithm, we first need an environment to provide the feed-
back interface. We adopted OpenAI Gym (Brockman et al.
2016) as the wrapper class for our environment, which is
the FDTD simulator that we have generated and fine-tuned.
When letting GPT generate the code for the environment,
we told GPT what the state space, action space, and reward
function are. Further specifications such as the step size of
actions, and the upper and lower bounds of state variables
are given to GPT as well. Then, with the environment code,
we could complete and implement our DQN code. A main
DQN script is finished by GPT based on the code skeleton
given earlier, considering requirements for the replay buffer,
policy DNN, optimizer, loss function, etc. See Figure 6for
the core part of the completed DQN script. Note that the
DQN script imports the environment class. The next step is
to run the DQN code, letting it interact with our FDTD en-
vironment and continuously optimize the PCSEL device.

Just like the FDTD code, the DQN code is then debugged
and fine-tuned by iteratively running the code and feed-
ing error messages to GPT. An example of this process is
demonstrated in Figure 7 in Appendix A.

Final optimization step with RL For the full optimiza-
tion loop of PCSEL using DQN, refer to Figure 8. The main
framework is built upon the one proposed in an earlier work
(Li et al. 2023b). The objective here is to optimize the ex-
isting PCSEL structure such that the target metrics are met.
Therefore at each iteration, computed optical attributes (las-
ing area, Q-factor ...) that are closer to the target metrics
will earn a higher reward. The state is defined as the de-
sign parameters of PCSEL, whereas the action comprises
the changes made to the state at each iteration. The envi-
ronment, which is a core component of DQN, is realized
with the FDTD simulation code that we generated earlier.
A detailed explanation of the working theories of DQN, the
state and action setup, the agent/policy net, and the reward
definition is reserved in the supplementary material. The op-
timization loop is run on an HPC cluster that has 20 CPU
cores and 2 GPUs with CUDA, where each trial takes up to
5 days to run.

Results and discussion

Due to the space limitations, we put the details about the
optimization of PCSEL via DQN in Appendix B. Figure 5
showcases the learning curves (scores vs. episodes) of train-
ing the DQN algorithm to optimize our PCSEL according
to the algorithm in Figure 8. Three representative trials have

Episode

A
v
er

ag
e

S
co

re

Episode

M
ax

 S
co

re

(a) (b)

Figure 5: Learning curves of training the DQN to optimize PCSEL, plotted as scores vs. episodes. (a) Average score of each
episode; (b) Maximum score of each episode. Each episode contains a horizon of 500 steps. Vertical axes are plotted in log
scale.

Metrics Optimized values Literature data (Chen et al. 2021a)

Operating wavelength (nm) ↑ 1383 948
Q factor ↑ 37000 2900

Normalized loss (1/nm) ↓ 4.3× 10−7 7.7× 10−6

Table 1: Optical attributes of the DQN-optimized PCSEL structure. The rightmost column reports the best literature data ((Chen
et al. 2021a)) for a direct metric comparison, which has a operating wavelength of 945 nm. Normalized loss per unit length is
additionally reported for a more fair and comprehensive comparison.

been selected to demonstrate the training convergence re-
sults. Figure 5(a) shows the average score of each episode,
whereas (b) shows the max score of each episode. Each
episode contains a maximum of 500 time steps. Each curve,
which represents a complete trial, was trained for 5 days un-
til cut off at the end of the 5th day due to limits on computing
resources.

Using the optimization results illustrated in Figure 5, the
optical attributes of the optimized PCSEL that satisfy the
target metrics/figure of merit (FOM) are reported in Table 1.
The corresponding set of solved design parameters of the
optimized PCSEL is included in Table 3 in suppl. mat. To
better illustrate the advantage of our results, the best PCSEL
data from the literature are listed in the rightmost column
of Table 1 for a direct comparison of metrics. The litera-
ture data were chosen after an exhaustive literature survey
(Hirose et al. 2014; Noda et al. 2017; Yoshida et al. 2019;
Nishimoto et al. 2013; Li et al. 2023a; Inoue et al. 2019;
Itoh et al. 2020; Gondaira et al. 2016; Kurosaka et al. 2008;
Streifer, Scifres, and Burnham 1977; Peng et al. 2011; Nishi-
moto, Maekawa, and Noda 2017; Inoue et al. 2020; Chen
et al. 2021a) of advancements in PCSEL over the past 10
years, which is fully reported in Table 5 of Appendix E.

The device size (side length) of the literature data (Chen
et al. 2021a) and our PCSEL is 125.0 µm and 2.0 µm, re-
spectively. In this proof-of-concept work, we limited our
PCSEL’s side length to 2.0 µm due to insufficient comput-
ing resources, as larger models would exponentially increase
the simulation time and stall the optimization process. In Ta-
ble 1, the calculated wavelength of 1383 nm is within the
acceptable tolerance of the target 1310 nm wavelength, be-
ing red shifted by 70 nm. The Q factor of our device is over

an order of magnitude larger than the literature data, leading
to stronger resonance in the PhC layer. Also, the normalized
loss per unit length (Kalapala et al. 2022) (radiation loss of
the resonance mode) of our device is over one order of mag-
nitude smaller than the literature data as seen in Table 1,
which indicates that our device is more energy efficient and
lossless in spite of its smaller size. This is also confirmed by
the larger Q-factor of our device. However, since we used an
infinitely large simulation model in FDTD (Bloch boundary
conditions), divergence angle and lasing area are not compa-
rable to the literature data at the moment and we will include
these metrics in future endeavors. All in all, we can conclude
that the optimized attributes shown in Table 1 have satisfied
and even exceeded the target metrics set by us.

Here, we propose several design techniques to further
lower the divergence angle of PCSELs: vary the shape of
the lattice (hexagonal vs. square), vary the shape of air holes
(triangular vs. circular), increase the device size, and use
double-lattice PhC structure (Yoshida et al. 2019). Analyt-
ically, according to Wang et al. (2022), the divergence angle
can be expressed as :

θ =
mλ

L
,

where m is the coefficient which varies with different struc-
tures of the PhC lattice such as the shape of lattice and air
holes and the period number of lattice etc., λ is the resonant
wavelength, and L is the size of PhC slab. Additionally, the
divergence angle of PCSEL can be described by the eigen-
states in momentum which dictates that the in-plane wave-
vector should be close to qπ/L (Chen et al. 2022). Here, q is
a coefficient similar to m. Therefore, the divergence angle of

PCSEL is determined by multiple complex parameters and
we will subsequently demonstrate the effect of these varia-
tions on the PCSEL performance. In addition, since RL is
known to be sample-inefficient and hard to train, we will ex-
plore other algorithms such as Bayesian optimization (BO)
(Shahriari et al. 2015) that are considerably more efficient
and lightweight. BO, as a black-box optimization algorithm
suitable for expensive environments, could potentially speed
up the optimization process and produce better results.

Last not but least, we experimented with another latest
LLM called Llama2 (Touvron et al. 2023), which was re-
leased by Meta AI in July 2023. As a lightweight (70 billion
parameters) and open-source LLM, Llama2 emerges as an
attractive alternative to ChatGPT. Using the same conver-
sations, we generated the Meep FDTD code and the DQN
code in Llama2, which are shown and analyzed in Appendix
D. We conclude that, overall, GPT delivered superior per-
formance and dominated Llama2 in terms of question un-
derstanding, idea brainstorming, code generation, error self-
correcting, etc. This performance gap, of course, can be at-
tributed to the enormous number of parameters (1.8 trillion)
and number of training hours that GPT-4 has in its posses-
sion. Nonetheless, for those who wish to work with open-
source and free-of-charge LLMs, Llama2 is still a decent
choice to start with.

Conclusion
In this paper, we introduced a novel human-AI co-design
paradigm for PCSELs, showcasing the broader relevance
of LLMs in laser design scenarios. We systematically ex-
plored the application of LLMs in machine learning-driven
design and optimization of PCSELs, aiming for minimal hu-
man intervention. Through ordinary conversational interac-
tions, ranging from initial concept proposals to final algo-
rithm implementation, GPT-4 aided in crafting FDTD sim-
ulation and deep reinforcement learning (e.g. DQN) code to
achieve an optimized PCSEL solution meeting criteria like
single-mode operation, high beam quality, large area, and
narrow divergence angle. This paradigm successfully ad-
dressed three major challenges faced by state-of-the-art deep
learning-enabled inverse design methods: 1) the fundamen-
tal one-to-many mapping or the non-convex issue; 2) heavy
human involvement for technical input; and 3) shortage of
ready-to-use machine learning methods. The design process
involves breaking down the design problem into modular
sub-problems and heuristically prompting GPT to answer
open-ended questions, among several other golden tricks we
summarized and recommended to the audience. We hope
that these golden tricks can serve as a general guideline for
anyone who wishes to benefit from LLMs’ power in hard-
ware design. Our results demonstrate that LLMs, such as
ChatGPT, can effectively guide laser design and optimiza-
tion, both conceptually and technically. In the end, we pro-
posed several future research directions and showcased a
comparison to meta’s Llama2. We will subsequently pur-
sue these future thrusts to deliver better optimization results.
Overall, we mark a significant step toward an AI-empowered
automated, end-to-end nanophotonic design and optimiza-
tion pipeline.

References

Ahn, M.; Brohan, A.; Brown, N.; Chebotar, Y.; Cortes, O.;
David, B.; Finn, C.; Fu, C.; Gopalakrishnan, K.; Hausman,
K.; et al. 2022. Do as I can, not as I say: Grounding language
in robotic affordances. arXiv preprint arXiv:2204.01691.

Almeida, V. R.; Barrios, C. A.; Panepucci, R. R.; and Lip-
son, M. 2004. All-optical control of light on a silicon chip.
Nature, 431(7012): 1081±1084.

Altug, H.; Englund, D.; and VučkoviÂc, J. 2006. Ultrafast
photonic crystal nanocavity laser. Nature physics, 2(7): 484±
488.

Asano, T.; and Noda, S. 2018. Optimization of photonic
crystal nanocavities based on deep learning. Optics express,
26(25): 32704±32717.

Bertsimas, D.; and Tsitsiklis, J. 1993. Simulated annealing.
Statistical science, 8(1): 10±15.

Blocklove, J.; Garg, S.; Karri, R.; and Pearce, H. 2023. Chip-
Chat: Challenges and Opportunities in Conversational Hard-
ware Design. arXiv preprint arXiv:2305.13243.

Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. Openai gym.
arXiv preprint arXiv:1606.01540.

Chang-Hasnain, C. J. 2000. Tunable vcsel. IEEE Journal of
Selected Topics in Quantum Electronics, 6(6): 978±987.

Chen, L.-R.; Hong, K.-B.; Huang, K.-C.; Yen, H.-T.; and
Lu, T.-C. 2021a. Improvement of output efficiency of p-face
up photonic-crystal surface-emitting lasers. Optics Express,
29(7): 11293±11300.

Chen, T.-S.; Li, Z.-L.; Hsu, M.-Y.; Lin, G.; and Lin, S.-D.
2017. Photonic crystal surface emitting lasers with quantum
dot active region. Journal of Lightwave Technology, 35(20):
4547±4552.

Chen, X.; Xie, Y.; Sheng, Y.; Tang, H.; Wang, Z.; Wang, Y.;
Wang, Y.; Liao, F.; Ma, J.; Guo, X.; et al. 2021b. Wafer-scale
functional circuits based on two dimensional semiconduc-
tors with fabrication optimized by machine learning. Nature
Communications, 12(1): 5953.

Chen, Z.; Yin, X.; Li, P.; Zheng, Z.; Zhang, Z.; Wang, F.;
and Peng, C. 2022. Analytical theory of finite-size pho-
tonic crystal slabs near the band edge. Optics Express, 30(9):
14033±14047.

Gondaira, K.; Ishizaki, K.; Kitano, K.; Asano, T.; and Noda,
S. 2016. Control of radiation angle by introducing symmet-
ric end structure to oblique waveguide in three-dimensional
photonic crystal. Optics Express, 24(12): 13518±13526.

Goodfellow, I.; Bengio, Y.; and Courville, A. 2016. Deep
learning. MIT press.

Hale, E. T.; Yin, W.; and Zhang, Y. 2008. Fixed-point contin-
uation for L1-minimization: Methodology and convergence.
SIAM Journal on Optimization, 19(3): 1107±1130.

Hegde, R. S. 2019. Photonics inverse design: pairing deep
neural networks with evolutionary algorithms. IEEE Journal
of Selected Topics in Quantum Electronics, 26(1): 1±8.

Hirose, K.; Liang, Y.; Kurosaka, Y.; Watanabe, A.;
Sugiyama, T.; and Noda, S. 2014. Watt-class high-power,

high-beam-quality photonic-crystal lasers. Nature photon-
ics, 8(5): 406±411.

Hocevar, M.; Immink, G.; Verheijen, M.; Akopian, N.;
Zwiller, V.; Kouwenhoven, L.; and Bakkers, E. 2012.
Growth and optical properties of axial hybrid III±V/silicon
nanowires. Nature communications, 3(1): 1266.

Hsu, M.-Y.; Lin, G.; and Pan, C.-H. 2017. Electri-
cally injected 1.3-µm quantum-dot photonic-crystal surface-
emitting lasers. Optics Express, 25(26): 32697±32704.

Inoue, T.; Morita, R.; Yoshida, M.; De Zoysa, M.; Tanaka,
Y.; and Noda, S. 2019. Comprehensive analysis of photonic-
crystal surface-emitting lasers via time-dependent three-
dimensional coupled-wave theory. Physical Review B,
99(3): 035308.

Inoue, T.; Yoshida, M.; Zoysa, M.; Ishizaki, K.; and Noda,
S. 2020. Design of photonic-crystal surface-emitting lasers
with enhanced in-plane optical feedback for high-speed op-
eration. Optics Express, 28(4): 5050±5057.

Itoh, Y.; Kono, N.; Fujiwara, N.; Yagi, H.; Katsuyama, T.;
Kitamura, T.; Fujii, K.; Ekawa, M.; Shoji, H.; Inoue, T.; et al.
2020. Continous-wave lasing operation of 1.3-µm wave-
length InP-based photonic crystal surface-emitting lasers us-
ing MOVPE regrowth. Optics Express, 28(24): 35483±
35489.

Jiang, J.; Chen, M.; and Fan, J. A. 2021. Deep neural net-
works for the evaluation and design of photonic devices. Na-
ture Reviews Materials, 6(8): 679±700.

Kalapala, A.; Song, A. Y.; Pan, M.; Gautam, C.; Overman,
L.; Reilly, K.; Rotter, T. J.; Balakrishnan, G.; Gibson, R.;
Bedford, R.; et al. 2022. Scaling challenges in high power
photonic crystal surface-emitting lasers. IEEE Journal of
Quantum Electronics, 58(4): 1±9.

Kim, S.; Marelli, B.; Brenckle, M. A.; Mitropoulos, A. N.;
Gil, E.-S.; Tsioris, K.; Tao, H.; Kaplan, D. L.; and Omenetto,
F. G. 2014. All-water-based electron-beam lithography us-
ing silk as a resist. Nature nanotechnology, 9(4): 306±310.

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Im-
agenet classification with deep convolutional neural net-
works. Advances in neural information processing systems,
25.

Kurosaka, Y.; Sakai, K.; Miyai, E.; and Noda, S. 2008.
Controlling vertical optical confinement in two-dimensional
surface-emitting photonic-crystal lasers by shape of air
holes. Optics express, 16(22): 18485±18494.

Li, H.; Tang, M.; Zhou, T.; Xie, W.; Li, R.; Gong, Y.; Martin,
M.; Baron, T.; Chen, S.; Liu, H.; et al. 2023a. Monolithically
integrated photonic crystal surface emitters on silicon with a
vortex beam by using bound states in the continuum. Optics
Letters, 48(7): 1702±1705.

Li, R.; Gu, X.; Li, K.; Huang, Y.; Li, Z.; and Zhang, Z. 2021.
Deep learning-based modeling of photonic crystal nanocav-
ities. Optical Materials Express, 11(7): 2122±2133.

Li, R.; Gu, X.; Shen, Y.; Li, K.; Li, Z.; and Zhang, Z. 2022.
Smart and Rapid Design of Nanophotonic Structures by an
Adaptive and Regularized Deep Neural Network. Nanoma-
terials, 12(8): 1372.

Li, R.; Zhang, C.; Xie, W.; Gong, Y.; Ding, F.; Dai, H.; Chen,
Z.; Yin, F.; and Zhang, Z. 2023b. Deep reinforcement learn-
ing empowers automated inverse design and optimization of
photonic crystals for nanoscale laser cavities. Nanophoton-
ics, 12(2): 319±334.

Luo, Z.-Q.; Ma, W.-K.; So, A. M.-C.; Ye, Y.; and Zhang,
S. 2010. Semidefinite relaxation of quadratic optimization
problems. IEEE Signal Processing Magazine, 27(3): 20±34.

Ma, W.; Liu, Z.; Kudyshev, Z. A.; Boltasseva, A.; Cai, W.;
and Liu, Y. 2021. Deep learning for the design of photonic
structures. Nature Photonics, 15(2): 77±90.

Ma, Z.; and Li, Y. 2020. Parameter extraction and inverse
design of semiconductor lasers based on the deep learning
and particle swarm optimization method. Optics Express,
28(15): 21971±21981.

Milzarek, A.; and Ulbrich, M. 2014. A semismooth Newton
method with multidimensional filter globalization for L1-
optimization. SIAM Journal on Optimization, 24(1): 298±
333.

Mirhoseini, A.; Goldie, A.; Yazgan, M.; Jiang, J. W.;
Songhori, E.; Wang, S.; Lee, Y.-J.; Johnson, E.; Pathak, O.;
Nazi, A.; et al. 2021. A graph placement methodology for
fast chip design. Nature, 594(7862): 207±212.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidje-
land, A. K.; Ostrovski, G.; et al. 2015. Human-level control
through deep reinforcement learning. nature, 518(7540):
529±533.

Molesky, S.; Lin, Z.; Piggott, A. Y.; Jin, W.; VuckoviÂc, J.;
and Rodriguez, A. W. 2018. Inverse design in nanophoton-
ics. Nature Photonics, 12(11): 659±670.

Nishimoto, M.; Ishizaki, K.; Maekawa, K.; Kitamura, K.;
and Noda, S. 2013. Air-hole retained growth by molecular
beam epitaxy for fabricating GaAs-based photonic-crystal
lasers. Applied physics express, 6(4): 042002.

Nishimoto, M.; Maekawa, K.; and Noda, S. 2017. Design
of photonic-crystal surface-emitting lasers with circularly-
polarized beam. Optics Express, 25(6): 6104±6111.

Noda, S.; Kitamura, K.; Okino, T.; Yasuda, D.; and Tanaka,
Y. 2017. Photonic-crystal surface-emitting lasers: Review
and introduction of modulated-photonic crystals. IEEE
Journal of Selected Topics in Quantum Electronics, 23(6):
1±7.

Ohnishi, D.; Okano, T.; Imada, M.; and Noda, S. 2004.
Room temperature continuous wave operation of a surface-
emitting two-dimensional photonic crystal diode laser. op-
tics express, 12(8): 1562±1568.

Oskooi, A. F.; Roundy, D.; Ibanescu, M.; Bermel, P.;
Joannopoulos, J. D.; and Johnson, S. G. 2010. MEEP: A
flexible free-software package for electromagnetic simula-
tions by the FDTD method. Computer Physics Communica-
tions, 181(3): 687±702.

Pearce, H.; Tan, B.; and Karri, R. 2020. Dave: Deriving
automatically verilog from English. In Proceedings of the
2020 ACM/IEEE Workshop on Machine Learning for CAD,
27±32.

Peng, C.; Liang, Y.; Sakai, K.; Iwahashi, S.; and Noda, S.
2011. Coupled-wave analysis for photonic-crystal surface-
emitting lasers on air holes with arbitrary sidewalls. Optics
Express, 19(24): 24672±24686.

Quan, Q.; Deotare, P. B.; and Loncar, M. 2010. Photonic
crystal nanobeam cavity strongly coupled to the feeding
waveguide. Applied Physics Letters, 96(20): 203102.

Reilly, K. J.; Kalapala, A.; Yeom, S.; Addamane, S. J.;
Renteria, E.; Zhou, W.; and Balakrishnan, G. 2020. Epitax-
ial regrowth and hole shape engineering for photonic crys-
tal surface emitting lasers (PCSELs). Journal of Crystal
Growth, 535: 125531.

Ren, Y.; Zhang, L.; Wang, W.; Wang, X.; Lei, Y.; Xue, Y.;
Sun, X.; and Zhang, W. 2021. Genetic-algorithm-based deep
neural networks for highly efficient photonic device design.
Photonics Research, 9(6): B247±B252.

Sakai, K.; Miyai, E.; Sakaguchi, T.; Ohnishi, D.; Okano, T.;
and Noda, S. 2005. Lasing band-edge identification for a
surface-emitting photonic crystal laser. IEEE Journal on Se-
lected Areas in Communications, 23(7): 1335±1340.

Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R. P.; and
De Freitas, N. 2015. Taking the human out of the loop: A
review of Bayesian optimization. Proceedings of the IEEE,
104(1): 148±175.

So, S.; Badloe, T.; Noh, J.; Bravo-Abad, J.; and Rho, J.
2020. Deep learning enabled inverse design in nanopho-
tonics. Nanophotonics, 9(5): 1041±1057.

Stella, F.; Della Santina, C.; and Hughes, J. 2023. How can
LLMs transform the robotic design process? Nature ma-
chine intelligence, 5(6): 561±564.

Streifer, W.; Scifres, D.; and Burnham, R. 1977. Coupled
wave analysis of DFB and DBR lasers. IEEE Journal of
Quantum Electronics, 13(4): 134±141.

Theodoridis, S.; and Koutroumbas, K. 2006. Pattern recog-
nition. Elsevier.

Thomson, D.; Zilkie, A.; Bowers, J. E.; Komljenovic, T.;
Reed, G. T.; Vivien, L.; Marris-Morini, D.; Cassan, E.; Virot,
L.; FÂedÂeli, J.-M.; et al. 2016. Roadmap on silicon photonics.
Journal of Optics, 18(7): 073003.

Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.;
Babaei, Y.; Bashlykov, N.; Batra, S.; Bhargava, P.; Bhosale,
S.; et al. 2023. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288.

Wang, Z.; Cai, S.; Liu, A.; Ma, X.; and Liang, Y. 2023. De-
scribe, Explain, Plan and Select: Interactive Planning with
Large Language Models Enables Open-World Multi-Task
Agents. arXiv preprint arXiv:2302.01560.

Wang, Z.; Tong, C.; Wang, L.; Lu, H.; Tian, S.; and Wang,
L. 2021. Photonic crystal surface emitting laser operating
in pulse-periodic regime with ultralow divergence angle. In
Photonics, volume 8, 323. MDPI.

Wang, Z.; Wang, P.; Lu, H.; Meng, B.; Wang, Y.; Tong, C.;
and Wang, L. 2022. Symmetry criterion and far-field con-
trol of photonic-crystal surface-emitting lasers. Applied Sci-
ences, 12(20): 10581.

Xie, B.; Wang, H.-X.; Zhang, X.; Zhan, P.; Jiang, J.-H.; Lu,
M.; and Chen, Y. 2021. Higher-order band topology. Nature
Reviews Physics, 3(7): 520±532.

Yoshida, M.; De Zoysa, M.; Ishizaki, K.; Tanaka, Y.;
Kawasaki, M.; Hatsuda, R.; Song, B.; Gelleta, J.; and Noda,
S. 2019. Double-lattice photonic-crystal resonators en-
abling high-brightness semiconductor lasers with symmet-
ric narrow-divergence beams. Nature materials, 18(2): 121±
128.

Zeng, Y.; Chattopadhyay, U.; Zhu, B.; Qiang, B.; Li, J.; Jin,
Y.; Li, L.; Davies, A. G.; Linfield, E. H.; Zhang, B.; et al.
2020. Electrically pumped topological laser with valley edge
modes. Nature, 578(7794): 246±250.

Zhang, C.; Yang, K.; Hu, S.; Wang, Z.; Li, G.; Sun, Y.;
Zhang, C.; Zhang, Z.; Liu, A.; Zhu, S.-C.; Chang, X.; Zhang,
J.; Yin, F.; Liang, Y.; and Yang, Y. 2023. ProAgent: Build-
ing Proactive Cooperative AI with Large Language Models.
arXiv preprint arXiv:2308.11339.

Zhang, J.; Xiao, P.; Sun, R.; and Luo, Z. 2020a. A
single-loop smoothed gradient descent-ascent algorithm for
nonconvex-concave min-max problems. Advances in neural
information processing systems, 33: 7377±7389.

Zhang, W.; Gao, B.; Tang, J.; Yao, P.; Yu, S.; Chang, M.-
F.; Yoo, H.-J.; Qian, H.; and Wu, H. 2020b. Neuro-inspired
computing chips. Nature electronics, 3(7): 371±382.

Zhou, T.; Tang, M.; Xiang, G.; Xiang, B.; Hark, S.; Mar-
tin, M.; Baron, T.; Pan, S.; Park, J.-S.; Liu, Z.; et al. 2020.
Continuous-wave quantum dot photonic crystal lasers grown
on on-axis Si (001). Nature communications, 11(1): 1±7.

LLM4Laser: Large Language Models Automate the Design of Lasers

Supplementary Material

Appendix A: The debugging demonstrations by GPT

The code generated by GPT for RL is shown in Figure 6 and the debugging iterations with GPT is shown in Figure 7.

declare transition and experience replay

Transition = namedtuple('Transition', ('state', 'action', 'next_state', 'reward'))

class ReplayMemory(object):

"""declare the replay buffer"""

def __init__(self, capacity):

self.memory = deque([], maxlen=capacity)

def push(self, *args):

"""Save a transition"""

self.memory.append(Transition(*args))

def sample(self, batch_size):

return random.sample(self.memory, batch_size)

def __len__(self):

return len(self.memory)

set up the neural network

create a class for the DQN's policy MLP

class Net(nn.Module):

def __init__(self, num_actions):

super(Net, self).__init__()

self.fc1 = nn.Linear(numState, 80) # just FC, no CNN

self.fc2 = nn.Linear(80, 120)

self.fc3 = nn.Linear(120, 80)

self.fc4 = nn.Linear(80, num_actions)

def forward(self, x):

x = x.to(device)

print(x.shape)

x = x.view(-1, numState)

x = F.relu(self.fc1(x))

x = F.relu(self.fc2(x))

x = F.relu(self.fc3(x))

x = self.fc4(x)

return x

def select_action(state):

"""selects an action accordingly to an epsilon greedy policy"""

global steps_done

sample = random.random() # generate random number

eps_threshold = EPS_END + (EPS_START - EPS_END) * math.exp(-1. * steps_done / EPS_DECAY) #

expotentially decaying eps

steps_done += 1

if sample > eps_threshold:

with torch.no_grad():

print(policy_net(state))

print(policy_net(state).max(1)[1])

return policy_net(state).max(1)[1].view(1, 1) # Pick action with the largest

expected reward (argmax)

else:

return torch.tensor([[random.randrange(n_actions)]], device=device,

dtype=torch.long) # pick random action

define the optimization (RL) process, which computes V, Q and the loss

def optimize_model():

if len(memory) < BATCH_SIZE:

Return

print('optimizing...')

transitions = memory.sample(BATCH_SIZE) # sample transitions from the replay buffer

batch = Transition(*zip(*transitions)) # transpose the batch

compute a mask of non-final states and concatenate the batch elements

non_final_mask = torch.tensor(tuple(map(lambda s: s is not None, batch.next_state)),

device=device,dtype=torch.bool)

non_final_next_states = torch.cat([s for s in batch.next_state if s is not None])

state, action, and reward from replay buffer

state_batch = torch.cat(batch.state)

action_batch = torch.cat(batch.action)

reward_batch = torch.cat(batch.reward)

compute Q(s, a)

state_action_values = policy_net(state_batch).gather(1, action_batch)

Compute V(s')

next_state_values = torch.zeros(BATCH_SIZE, device=device) # V is zero for final state

next_state_values[non_final_mask] =

target_net(non_final_next_states).max(1)[0].detach() # V' = max(Q')

compute the expected Q values

expected_state_action_values = (next_state_values * GAMMA) + reward_batch # Q_expected =

r + gamma*V'

cost function

criterion = nn.SmoothL1Loss()

loss = criterion(state_action_values, expected_state_action_values.unsqueeze(1)) # L =

Q.actual - Q.expected

optimize the MLP model

optimizer.zero_grad()

loss.backward()

for param in policy_net.parameters():

clamp grad values to between -1 and 1

param.grad.data.clamp_(-1,1)

optimizer.step()

print(loss.item())

writer.add_scalar('training/losses', loss.item(), steps_done)

Figure 6: RL code generated by GPT-4 for optimization of PCSEL using DQN. Left: replay buffer, policy network, and action
selection setup, right: core part of DQN where the value functions, action-value functions, and loss are computed. The code
shown here is the final version that runs successfully after several rounds of debugging with human.

Appendix B: The details about the optimization of PCSEL via DQN

Deep Q-learning. Deep Q-Learning (DQN) is a type of reinforcement learning algorithm that uses a deep neural network
to approximate the action-value (Q) function, which is used to determine the optimal action to take in a given state. The Q-
function represents the expected cumulative reward of taking a certain action in a certain state and following a certain policy. In
Q-Learning, the Q-function is updated iteratively as the agent interacts with the environment. It is the same in Deep Q-Learning.
But instead of changing the Q value in a map directly, Deep Q-learning changes the weight in the neural network. Actually the
learning process needs 2 neural networks, called the policy network and target network, respectively. These networks have the
same architecture but different parameter weights. Every N steps, the weights from the main network are copied to the target
network. In the action selection process, we apply a strategy called Epsilon Greedy Exploration, which can be described as
follows: 1) At every time step when it’s time to choose an action, roll a dice. 2) If the dice has a probability less than epsilon,
choose a random action. 3) Otherwise take the best known action at the agent’s current state. At the very beginning the epsilon
is very large, which means the agent needs to explore the environment and get some weights updated (all the weights are
initialized as 0). As the epsilon is decreasing, the agent starts to try existing known good actions more and more. Using both of
these networks leads to more stability in the learning process and helps the algorithm to learn more effectively. And about the
weight update of the DQN, we use Bellman’s Equation, which is shown below:

Vπ(s) = Eπ[Rt+1 + γVπ(st+1)|st = s) (1)

The error "RuntimeError: meep: invalid boundary absorbers for this

grid_volume" happens, help me fix it.

I apologize for the error you are encountering. This error can be due to an

inconsistency between the size of the Perfectly Matched Layer (PML) and the

simulation region.

In your case, the simulation region extends infinitely along the x and y

directions due to the use of mp.inf in defining the geometry. But your PML

layers are defined only along the z direction.

You can solve this issue by limiting the extent of your simulation region to a

finite size along all directions and adjust the PML definition accordingly:

Define the PML layers
pml_layers = [mp.PML(pml_thickness, direction=mp.X),

mp.PML(pml_thickness, direction=mp.Y),
mp.PML(pml_thickness, direction=mp.Z)]

The error "RuntimeError: meep: Could not determine normal direction for

given grid_volume" happens after I modified our PML layer declaration as

you say. Please help me fix it.

I apologize for the confusion. This error may also be caused by a mismatch

between the cell size and the simulation geometry.

The error could arise if any of the holes (or any other object in the geometry)

extends beyond the cell boundaries defined by cell_size.

In this case, you can try adding a margin to your cell size to ensure that the

cell includes all elements of the geometry:

margin = 1.0 #For example, add a margin of 1.0 in each direction
cell_size = mp.Vector3(50*lattice_spacing + 2*margin,

50*lattice_spacing + 2*margin, z_total + 2*margin)

I am sorry but your suggestions do not help me eliminate the error

"RuntimeError: meep: Could not determine normal direction for given

grid_volume”.

In your case, you've defined the size of the FluxRegion to be the size of the

photonic crystal layer. This definition is creating ambiguity, because it

doesn't clearly specify in which direction the flux should be computed (x, y,

or z). Meep expects one of the dimensions of the FluxRegion to be zero, to

clarify the direction of the flux calculation.

So, if you want to compute the power flowing through the photonic crystal

layer in the z direction, you should set the z-dimension of the FluxRegion to

zero:

flux_box = mp.FluxRegion(center=mp.Vector3(),
size=mp.Vector3(n_holes*lattice_constant,
n_holes*lattice_constant, 0))

(a)

But the error "NameError: name 'gym' is not defined" happened while

running. Please help me fix it.

The error "NameError: name 'gym' is not defined" is due to the fact that the

gym module is not imported. gym is a Python library for developing and

comparing reinforcement learning algorithms, and it's used in your code to

define the environment in which the agent operates.

You can fix this issue by simply importing gym at the beginning of your script.

Additionally, you are also using spaces from gym, so you need to import that

as well.

Add the following import statements to your code:

Thanks. But the error "AttributeError: 'MeepEnv' object has no attribute

'parameters'" happens. Please help me fix it.

The error "AttributeError: 'MeepEnv' object has no attribute 'parameters'"

means that you are trying to access the parameters attribute before it is

defined in the MeepEnv class.

You can modify your code like this:

import gym
from gym import spaces

class MeepEnv(gym.Env):
def __init__(self):

super(MeepEnv, self).__init__()
Define action space
The agent will choose one of 20 possible actions
self.action_space = spaces.Discrete(20)
Define observation space
Assuming the emitted power is the only

observable state
self.observation_space = spaces.Box(low=0,

high=np.inf, shape=(2,), dtype=np.float32)
Initialize parameters
self.parameters = {

"t_substrate": 0.2,
"t_n_cladding": 0.3,
"t_active": 0.5,
……}

…

(b)

Figure 7: a) Debugging iterations of the FDTD code by conversing with GPT-4. All bugs/errors in the code demonstrated
in Figure 4 were cleared out within 5 iterations; b) Debugging iterations of the DQN code by conversing with GPT-4. All
bugs/errors in the code demonstrated in Figure 6 were cleared out within 5 iterations.

FDTD

Environment

• thickness of n layers

• Shape of holes

(circular/triangular)

• Lattice constant

• Radius of holes

• Filling factor

• Cross-sectional

width

• Square/triangular

lattice

• Material properties

PCSEL

(Agent)

(Observe state)

Actions = change in state:

• Change thickness

• Change hole shape:

circular or triangular

• Change lattice constant

• Change radius of holes

• Change filling factor

• Change cross-sectional

width

• Change: square or

triangular lattice

• Change: material

properties

D
es

ig
n

p
ar

am
et

er
s

Reward assessed by

comparing computed

lasing area, wavelength,

power, and divergence

angle to target metrics

in Table 1.

(Action

value

func)

Figure 8: Optimization of PCSEL via reinforcement learning (DQN), where the objective is to meet those target metric/FOM
listed in Table 4. This is a detailed expanded version of the right column of Figure 3, including the state and action parameters,
the reward definitions, the FDTD environment, and the agent DNN. Q(s, a) is action-value functions predicted by the agent
DNN.

A concise introduction to the DQN algorithm is presented in the following text. DQN introduces a groundbreaking concept
by integrating a policy (action-value) network Q(s, a) with a target network Q′(s, a), leading to substantial improvements
in training performance. Initially, Q′(s, a) is set to be an exact replica of Q(s, a), sharing the same parameters. parameter
C denotes the number of steps before updating the target action-value function Q′(s, a) with the values from Q(s, a), often
referred to as the ºfreeze time.º This freezing mechanism has proven to be highly beneficial in enhancing convergence stability
and reducing policy oscillations.

Another crucial aspect of DQN is the implementation of experience replay (Mnih et al. 2015), facilitated through a replay
buffer denoted as D. At each time step, the agent’s transition (s, a, r, s′), also known as experiences, is stored in a pre-allocated
array called D. During the policy update using SGD, experiences from D are randomly selected as training samples. Experience
replay offers several advantages: firstly, it allows past experiences to be reused in numerous future gradient updates, leading
to enhanced sample efficiency and potentially faster convergence; secondly, as consecutive samples are often correlated and
exhibit similar distributions, this can cause the learning process to get stuck at local minima. By randomizing these samples,
the data correlation is broken, enabling a more diverse data distribution. Experience replay can also smooth out learning curves
and alleviate oscillations or even divergence during training.

Next, ϵ-greedy plays a crucial role in DQN. Given that DQN operates in an off-policy manner, it directly estimates actions
using the greedy policy a = argmaxa′ Q(s, a′). However, to strike a balance between exploration and exploitation and enable
the agent to explore a broader range of the state space, ϵ-greedy dynamically adjusts this policy. The agent follows the ϵ-
greedy policy based on Q(s, a), as outlined in Algorithm 1. Practically, the ϵ-greedy policy mostly adheres to the greedy policy,
selecting the action with the highest estimated Q-value with a probability of 1 − ϵ. However, with a probability of ϵ, the agent
selects a random action to promote exploration. In this work, the initial and final values of ϵ are set to 0.90 and 0.05, respectively.

The defined objective function, also known as the loss function, for this problem, is as follows:

L(θ) = E[(r + γmax
a′

Q′(s′, a)−Q(s, a))2] (2)

To optimize the loss function L(θ) presented in Equation 1, stochastic gradient descent is employed. In our conducted ex-
periments utilizing DQN, we utilized the RMSprop optimizer with minibatches of size 32 and a learning rate of 0.00025. In
Equation 1, the variable r represents the reward, and we set the discount factor γ to 0.99. This choice of γ allows us to estimate
the cumulative return defined at a future time point T. The cumulative return is computed as the discounted sum of all future

rewards:

R =

T∑

t

γtrt (3)

Through the optimization of the loss function L(θ) as defined in Equation 1, the primary goal is to maximize the cumulative
return R as expressed in Equation 2. By achieving this objective, we aim to identify and obtain the optimal action that we are
seeking in our context.

The state and action setup In the paper we have briefly introduced our PCSEL structure and some elements, here we present
a detailed information about it:

Among all these design parameters, we choose 10 to be optimized, which are the hole radius, the lattice spacing, the thickness
of all five layers, the reflective index of n-cladding layer (we let the refractive index of p-cladding layer change with n-cladding
layer), the active layer and the substrate layer. Each parameter to be optimized has two changing directions. Thus we have 20
discrete action space over all. For change of thickness, we let the step to be 0.0005 or minus 0.0005. For the change of lattice
spacing and reflective index, we set the step of 0.0005 or minus 0.0005. For hole radius, we let the change to be 0.0001 each
time. The following table shows the boundary of the parameters to be changed.

Table 2 presents the state spaces and action spaces in our DQN algorithm. For this proof-of-concept work, the PCSEL is
designed to have 10 states and 20 discrete actions, striking a balance between a manageable parameter space and limiting the
overall training time. It is worth noting that more comprehensive investigations can be chosen for higher-order state-action
spaces in future studies. The state space, representing a subset of design parameters, encompasses geometric parameters of the
PCSEL such as thicknesses and lattice spacing. These states serve as inputs to the policy network. On the other hand, the action
space is constructed by incrementing or decrementing each state by a fixed step size of 0.0001 or 0.0005, as outlined in Table 2.
To determine the optimal action, the policy network predicts an action, which is then utilized to update the state in the FDTD
environment. Subsequently, the environment calculates the associated rewards based on the updated state. For instance, if the
current state is s = 0.3 and the action is a = +0.0001, the environment will yield the next state as s′ = 0.3+0.0001 = 0.3001,
along with the associated reward as rew′. The output reward and the resulting next state are fed back into the policy to initiate
the subsequent iteration, and concurrently, they are used to update the policy network. Past states and rewards are typically
stored in a replay buffer to be utilized later and to mitigate sample correlations (Mnih et al. 2015). If, after multiple action
steps, the value of the current state exceeds the boundaries defined by the Min and Max values specified in Table 2, the current
episode will be forcibly terminated, and a new episode will begin. For a more comprehensive and detailed understanding of
the DQN’s mechanism, additional elaborations and in-depth information can be found in the original DQN paper (Mnih et al.
2015), enabling readers to gain a deeper insight into the process.

PCSEL design parameters

State space Min Max

substrate layer thickness -0.3 um 0.3 um
n cladding layer thickness -0.3 um 0.3 um

active layer thickness -0.3 um 0.3 um
PhC layer thickness -0.3 um 0.3 um

p cladding layer thickness -0.3 um 0.3 um
refractive index of substrate layer -0.15 0.15

refractive index of n cladding /p cladding layer -0.15 0.15
refractive index of active layer -0.15 0.15

lattice spacing -0.1 um 0.1 um
hole radius -0.1 um 0.1 um

Action space Total No. of actions Action type

each state ± a step size 20 Discrete

Table 2: State space and action space of this DQN-based optimization of PCSEL. State variables are net changes in design
parameters (i.e. state = ∆design parameter)

Reward formulation
To assess the quality of the PCSEL, we set four criteria, which are resonant wavelength, emitting power (or Q-factor), lasing

area, and divergence angle. Each criteria is going to be converted to a reward, and the score is the weighted normalized sum of
all four rewards.

Equation 4-8 defines the reward and how it’s related to the target optical responses as laid out in the main text:

rew1 = 1− |λ∗ − λ|/λ∗ (4)

rew2 = 1− (area∗ − area)/area∗ (5)

rew3 = 1− (Q∗ −Q)/Q∗ (6)

rew4 = 1 + (divergence∗ − divergence)/divergence∗ (7)

score = rewT = 10× (α× rew1 + β × rew2 + γ × rew3 + η × rew4) (8)

In the reward formulation, rew1 involves several components. The target maximum to be achieved is denoted by λ∗, while
λ represents the current value of the wavelength obtained from the FDTD environment. To invert the reward and ensure that
larger wavelength result in larger rewards, a constant 1 is used. Additionally, to normalize the magnitude of rewards, we use λ∗

as the denominator. In rew2, the reward is defined based on the target modal volume area∗. The formulation of rew2 is defined
such that rewards are higher when the calculated modal volume (area) are closer to area∗, which aligns with the objectives of
the inverse design problem stated earlier. It is the same in rew3 and rew4, where we choose our target as emitting power (Q-
factor) and divergence angle. Finally, Equation 8 defines the total reward rewT as a weighted sum from rew1 to rew4, which
we also call score. Weighting coefficients are selected as follows after multiple rounds of tuning with different combinations:
α = 1e+ 10, β = 1e+ 15, γ = 1e+ 30, η = 1e+ 32. We chose large coefficients because sometimes reward values could be
as low as 1e-20 or even smaller. The target metrics are listed in Table 4 below, and since we have an infinitely large simulation
model with Bloch boundary conditions, we didn’t report the lasing area, divergence and beam quality in this paper. This will be
covered in future works.

Solved design parameters

State space Solved Values

substrate layer thickness 0.1680 um
n cladding layer thickness 0.1460 um

active layer thickness 0.1920 um
PhC layer thickness 0 um

p cladding layer thickness 0 um
refractive index of substrate layer 0

refractive index of n cladding /p cladding layer 0.0150
refractive index of active layer -0.1000

lattice spacing -0.0170 um
hole radius factor -0.1892

Table 3: Solved design parameters of the optimized PCSEL. Hole radius = hole radius factor × lattice spacing / 2

Metric/FOM Target values

Operating wavelength = 1310 nm

Lasing area ≥ 0.36 µm2

Q factor ≥ 10000
Divergence angle ≤ 3o

Beam quality M2 ≤ 3

Table 4: Target Metric/FOM of the PCSEL device to be satisfied via optimization, including the Q-factor, lasing area, operating
wavelength, beam quality, and divergence angle. An ideal PCSEL has the following characteristics: single-mode, high beam
quality M2, large emission area, and small divergence angle. Since M2 is dependent on divergence angle, we didn’t set it as a
reward parameter.

Optimization results The best design parameters of the optimized PCSEL structure is summarized in Table 3 and the
corresponding solved optical attributes are listed in Table 1 in the main text. Please note that state variables are net changes
in the design parameters, rather than the design parameters themselves. So a state variable equal to 0 means that there is
zero change in that particular parameter. These optimized values can be used to fabricate a PCSEL device in clean-room with
enhanced performance metrics.

Calculations of output power-to-injecting power ratio To calculate the output power-to-injecting power ratio of our PC-
SEL, which is equivalent to the electron (photon)-to-photon conversion efficiency, we used the following formula: Poynting
vector divided by dipole source power (the Poynting vector was calculated by Lumerical FDTD’s near field power monitor,
while the dipole power was set to 3.98265e-14 w in Lumerical FDTD), or,

power ratio = Poynting/dipole power = Poynting/3.98265× 10−14 (9)

It should be noted that the power ratio calculated here is an ideal/theoretical value, and actual experimental results will be
normally worse than this due to optical losses and heat dissipations.

Appendix C: Choice of lasers and computation resources

Choice of laser cavities for inverse design. Traditional VCSELs are lasers that emit light vertically from the surface of the
semiconductor structure, allowing for efficient coupling with optical fibers and other optical components. Photonic crystals
are artificial structures with periodic refractive index modulation in one, two, or three dimensions. This periodicity generates
bandgaps, band edges, and other unique properties that determine the propagation characteristics of light at specific frequencies.

PCSELs are a type of vertical-cavity surface emitting laser, compared to traditional VCSELs, that utilizes two-dimensional
photonic crystals to control multi-directional diffraction, resulting in single-mode, high-power, and low-divergence angle emis-
sion.

The basic design of a PCSEL includes a photonic crystal layer, an active layer, and several cladding layers, including p-n
junctions and electrodes, as shown in Figure 2. The photonic crystal layer typically serves as a resonance cavity. The active layer
is usually composed of III-V materials (such as InP, GaAs, GaN, etc.) and is doped with materials to form quantum wells or
quantum dot structures, enhancing emission efficiency and controlling emission characteristics. The cladding layers are doped
with impurity atoms to form p-type or n-type semiconductor materials, increasing the carrier concentration and enhancing the
material’s electrical conductivity.

When an electrical current is applied to the device, the carriers undergo carrier population inversion between the valence
band and the conduction band in the active layer, leading to the phenomenon of population inversion. Subsequently, carrier
recombination occurs, releasing photons. These photons further couple into the photonic crystal cavity, enhancing stimulated
emission. The design of the photonic crystal layer determines the coupling strength, wavelength, and direction of the emitted
light, making the proper design of the photonic crystal layer crucial for the overall quality of PCSELs.

Computing resources and software packages used. The RL code was meticulously developed in Python, strictly adhering
to the algorithmic model depicted in the Figure 8. Throughout the implementation, widely used machine learning libraries
like PyTorch, OpenAI Gym, and Ray RLlib played a crucial role. In particular, Gym and RLlib proved to be particularly
advantageous in accelerating progress. For the training of L2DO, we utilized two Dell workstations with 8 Intel Xeon Gold
5222 cores and an NVIDIA Quadro P4000 GPU. Additionally, comparative computations were performed on a cluster machine
with 30 Intel Xeon Gold 5218 processors and 6 NVIDIA 2080Ti graphics cards. The cluster machine exhibited approximately
200% higher computational efficiency compared to the Dell workstations.

Regarding the FDTD simulations, FDTD (Finite Difference Time Domain) is a numerical method that employs central
difference quotients to replace the first-order partial derivatives of the field with respect to time and space. By recursively
simulating the wave propagation process in the time domain, the FDTD method obtains the field distribution. This approach
facilitates a more straightforward and efficient analysis of the wave propagation process.

Appendix D: Experiments with Llama2

Meep and DQN code generated by meta Llama2 is shown in Figure 9 and 10, respectively. Compared to those generated by
GPT in the main text, one can readily conclude that Llama2 is not nearly as powerful and capable as GPT-4. We can tell that
both code are missing core components/modules that render the code erroneous or unable to execute. Critically, Llama2 doesn’t
seem to have the knowledge of meep and had huge trouble with writing correct methods/functions in meep. Sometimes it would
even make up fake methods that doesn’t exist at all. Moreover, Llama2 was unable to effectively correct the errors we fed back
to it, and the human facilitator had to manually correct the errors. All in all, Llama2 proved to be inferior to GPT4 in virtually
all aspects and for those who wish to efficiently design hardware with LLM, GPT is still the top choice. This, however, should
not discourage anyone to use Llama2 because one can still harness the open-source power of Llama2.

The values of most of the hyperparameters were selected by performing an informal search with the PCSEL. We did not
perform a systematic or exhaustive grid search owing to the high computational cost, although it is understandable that even
better results could be obtained by systematically tuning the hyperparameter values one-by-one.

Appendix E: Full comparison with literature data

We conducted an extensive literature survey of existing state-of-the-art (SOTA) PCSELs and summarized the comparison
between our results and a selected group of papers in Table 5 below (only square lattice and circular holes are reported).

(a) (b)

Figure 9: Meep code generated by Llama2.

Figure 10: DQN code generated by Llama2.

Paper
lambda

(nm)

PhC

dimension

(um)

Device

area

(um2)

Lattice

constant

(nm)

Divergence Q factor ↑
Lasing area

(m2)
M2

half

theta

Loss

(1/nm)
↓

Zhou et al. (2020) 957 50*50 2500 / / / / / / /

Ohnishi et al. (2004) 959.44 50*50 2500 / 1.1
◦ / 2.83e-09 / 0.55 /

Sakai et al. (2005) 965 50*50 2500 286.25 1
◦ 1700 / / 0.5 1.29052e-05

Hsu, Lin, and Pan (2017) 1299 300*300 90000 390 ≤ 2
◦ 5000 1.76625e-08 / 1 3.22051e-06

Chen et al. (2017) 1260 300*300 90000 / / / / / / /

Chen et al. (2021a) 948 125*125 15625 281 0.75
◦ 2900 6.22e-09 3.1 0.375 7.70647e-06

Wang et al. (2021) 935 340*340 115600 / 0.38
◦ / / 6.5 0.19 /

Reilly et al. (2020) 1010 250*250 62500 / / / / / / /

Kalapala et al. (2022) 1040 2000*2000 4e+6 / / 100000 3.14e-08 / / /

Ours 1310 2*2 4 400 1.2
◦ 36400 9.92e-14 1.36 0.6 4.30787e-07

Table 5: Comparative assessment of SOTA PCSELs, where GaAs serves as the gain material and PhC lattices are characterized
by square and circular holes. The º/º indicates the absence of data in the cited literature.

