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Abstract—We present a novel method for extrinsically calibrating a
camera and a 2D Laser Rangefinder (LRF) whose beams are invisible from
the camera image. We show that point-to-plane constraints from a sin-
gle observation of a V-shaped calibration pattern composed of two non-
coplanar triangles suffice to uniquely constrain the relative pose between
two sensors. Next, we present an approach to obtain analytical solutions us-
ing point-to-plane constraints from single or multiple observations. Along
the way, we also show that previous solutions, in contrast to our method,
have inherent ambiguities and therefore must rely on a good initial esti-
mate. Real and synthetic experiments validate our method and show that
it achieves better accuracy than previous methods.

Index Terms—2D Laser Rangefinder (LRF), Camera, Extrinsic Calibra-
tion, Analytical Solution.

I. INTRODUCTION

ANY robotics systems rely on cameras and laser range

finders to compute environment geometry [1]. Two di-
mensional (2D) Laser Range Finders (LRFs) which measure
depth along a single plane are commonly used due to their low
weight, low cost and low power requirements.

Taking advantage of measurements from an LRF or a LIDAR
combined with a camera, however, requires precise knowledge
of the relative pose (orientation and position) between them.
This is a classical extrinsic calibration problem where the ob-
jective is to determine the transformation between two coordi-
nate frames. Establishing correspondences between two sensors
is easier for 3D LIDARs since distinct features can be identi-
fied both among laser points and in the camera image. Exist-
ing methods include 3D LIDAR-camera calibration by using a
circle-based calibration target [2] and an arbitrary trihedron [3].

Extrinsic calibration of a 2D LRF is more challenging be-
cause a 2D LRF produces only a single scanning plane for each
pose which is invisible from the regular camera. This makes
it difficult to find correspondences. Therefore, additional con-
straints must be used. We note that if we were given the cor-
respondences between laser points and their images (e.g. IR
camera) the extrinsic calibration problem reduces to a standard
PnP (Perspective-n-Point) computation [4]. However, in our
case, these correspondences are unknown.

There is a large body of work on the LRF-camera calibration.
One of the earliest methods is presented by Zhang and Pless [5]]
using points-on-plane constraints. However, only two degrees
of freedom are constrained for the relative pose between the
camera and the LRF from a single input observation. There-
fore, this method requires a large number of different observa-
tions with a wide range of views (more than 20 snapshots) for
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Fig. 1
THE CALIBRATION SYSTEM INCORPORATING A CALIBRATION TARGET
AND A CAPTURE RIG; LEFT: THE CALIBRATION TARGET FORMED BY TWO
TRIANGULAR BOARDS WITH A CHECKERBOARD ON EACH TRIANGLE;
RIGHT: THE CAPTURE RIG CONSISTING OF A 2D LRF AND STEREO
CAMERAS. (ONLY ONE CAMERA IS INVOLVED IN THE CALIBRATION
PROBLEM, THE OTHER IS JUST FOR TESTING IN REAL EXPERIMENT.)

accuracy. Vasconcelos et al. [6] presented a minimal solution
by forming a perspective-three-point (P3P) problem to address
disadvantages in [5]]. Zhou [7|] further proposed an algebraic
method for extrinsic calibration. Both techniques require mul-
tiple observations (at least three), and have inherent degeneracy
where intersecting lines of two planes with the third plane are
parallel, and three intersecting points of laser segments from
three input observations are on a danger cylinder.

With point-on-line constraints, the approaches in [8] and [9]]
use a black triangular board and a V-shaped calibration target
respectively. The results from these two methods are not accu-
rate due to the sparse sampling of laser points. Further, a large
number (usually more than 100) of images are needed to com-
pensate for the lack of constraints for each input observation.
Based on the ideas in [8]] and [9] (minimizing the projection
distance on the image between intersected laser points and the
feature lines), the authors in [[10] also propose to use a V-shaped
calibration target. They increase the laser points’ sampling for
each observation by introducing more feature lines and virtual
end-points, but the same drawback still exists as in [9]] and [10].
Therefore, they still need a large amount (around 50) of differ-
ent observations to achieve a reasonable result.

The method in [11] provides an analytical solution using a
white board with a black band in the middle. It needs only six
different observations. Similarly, the authors in [[12] give an
analytical solution to this problem using a white board with a
black line in the middle. Compared with [11], it further com-
putes the optimal least-squares solution to improve the robust-
ness to noise. The analytical solutions in [11] and [[12] are ob-
tained by minimizing the sum of points-on-plane errors, where



o

Fig. 2
A SINGLE PAIR OF LRF-CAMERA OBSERVATIONS OF OUR CALIBRATION TARGET WITH THE DEFINITION OF PARAMETERS FOR GEOMETRY CONSTRAINTS.

(A): THE OUTPUT OF THE 2D LRF-CAMERA CALIBRATION IS THE RELATIVE TRANSFORMATION ER AND €t (B): THE INPUT DATA FROM THE LRF
ARE THREE LASER POINTS Lp1, Lpy AND Lp3. (C): TWO INPUT NORMALS FROM THE CAMERA ARE €nj AND ©ny. (D): THE OTHER INPUT DATA FROM
THE CAMERA ARE TWO NORMALS ©n3 AND €ny AND TWO DISTANCES d; AND da.

only perspective planes from the image are considered instead
of general 3D planes. However, both of these two methods still
cannot avoid using a large number of different observations for
accuracy because of the insufficient constraints for each input
observation.

The work described in [13], presents an approach which only
requires the observation of a scene corner (orthogonal trihedron)
commonly found in human-made environments. This method
builds line-to-plane and point-to-plane constraints, which re-
quires at least two input observations. However, the calibration
accuracy highly depends right angles between three orthogonal
planes, which are difficult to be made exactly 90° in practice.
When multiple observations from different views are needed for
additional accuracy, the right angle between two walls often af-
fects the laser measurement: scanned laser line on one wall is
curved if laser beams point almost perpendicular towards the
other wall for a good view. Our method accommodates an arbi-
trary obtuse angle in our calibration target (See Fig.[I) so that it
can adjust the view angle between the pattern and linear beams.

The authors in [14] further extend the work [[13|] by deriv-
ing a minimal solution from a single input observation. The
solution, however, is obtained by two procedures (calibration
between the trihedron and the LRF, and calibration between the
trihedron and the camera), and thus has accumulated error due
to the data noise in each procedure. Specifically, in calibration
between the trihedron and the camera, they determine the scale
of the translation by using the actual length of two edges of the
trihedron which is inconvenient to be built and difficult to be
measured accurately.

In theory, LRF-camera calibration from a single input obser-
vation is important since it means that the geometric constraints
from a single view is sufficient. In practice, it further implies
that users, when taking multiple input observations for further
accuracy, do not need to be concerned about degenerate cases in
which the input observation is invalid. Our triangular V-shaped
calibration target (See Fig.[I)) has two checkerboards, which are
simultaneously and accurately estimated in camera calibration.
Further, the angle between two triangular boards of the target
can be arbitrary which makes it convenient to build. We study
this extrinsic calibration problem and make the following con-
tributions:

o We show that by minimizing the sum of points-on-plane
errors, a single observation of two non-coplanar triangles
sharing a common side (See Fig. [I) suffices to unambigu-
ously solve the calibration problem.

« Even though planar, triangular or V-shaped rectangular
patterns have already been proposed to solve the calibra-
tion problem, we show that previous methods do not suf-
ficiently constrain the calibration problem to allow for a
unique solution. Therefore, they rely on a large number of
measurements and a good initial estimate.

« We also present a robust analytical solution to the system
of points-on-plane constraints for calibration from a single
observation in the presence of noise.

« For additional accuracy, we show that by using only a few
additional observations, our method achieves significantly
smaller error than existing methods.

II. SPATIAL AMBIGUITIES IN PREVIOUS METHODS

The objective of 2D LRF-camera calibration is to obtain the
relative pose between these two sensors: the orientation ¢ R and
position “t, of the LRF frame {L} with respect to (w.r.t.) the
camera frame {C'} (See Fig. . Spatial ambiguity means that
there are infinite solutions for Y R and “t;, from a single input
observation of the calibration target.

Without loss of generality, the laser scanning plane is defined
as the plane Y7, = 0 such that we do not have an explicit de-
pendence on the second column vector ry of R when a 3D
laser point “p = [x,0,21] " is transformed to the point “p =
[zc,yc,2¢]" in the camera frame by “p = YR - Lp + “¢.
Since gR is an orthonormal matrix, we have three constraints
for its first and third columns (r; and r3)

r3Tr3 =1, rlTrl =1, r3Tr1 =0. @))

Thus, we need at least six additional geometry constraints for
solving nine unknowns (in r1, r3 and “t7).

The spatial ambiguity is caused by the lack of sufficient ge-
ometric constraints from a single input observation. The disad-
vantage of insufficient constraints is that a large number of snap-
shots of the calibration target from different views are needed
to reduce the ambiguity by minimizing the geometry cost func-
tion. A good initial estimate thus must be required otherwise
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Fig. 3
EXISTING METHODS DO NOT SUFFICIENTLY CONSTRAIN THE PROBLEM FROM A SINGLE INPUT OBSERVATION. (1): IN THE APPROACH OF ZHANG AND
PLESS [|5], ESSENTIALLY, ONLY TWO LASER POINTS £p; AND L'py ARE CONSTRAINED ON THE CALIBRATION BOARD, WHERE d IS THE DISTANCE FROM
THE CAMERA TO THE BOARD. A): THE CAMERA FRAME C'; WITH THE BOARD CAN BE MOVED HORIZONTALLY AND VERTICALLY ALONG THE BOARD TO
C3. B): THE CAMERA FRAME C] WITH THE BOARD ARE FIRST ROTATED ALONG THE BOARD NORMAL €1 AND THEN ROTATED ALONG THE LASER LINE
DIRECTION £1 1O REACH C. (2): IN THE APPROACH OF L1 ET AL. [8]], ONLY TWO GEOMETRY CONSTRAINTS ARE OBTAINED. A): THE CAMERA FRAME
C'| WITH THE TRIANGULAR CALIBRATION BOARD ARE FIRST ROTATED LONG THE BOARD NORMAL ©n AND THEN ROTATED ALONG THE LASER LINE
DIRECTION 1 TO REACH C3 SUCH THAT £p; AND Lpo ARE STILL ON THE BORDER LINES. B): THE LRF FRAME L1 CAN BE MOVED AND ROTATED TO
GET Lo AS LONG AS p; AND Lpy ARE ON GREEN 3D PERSPECTIVE PLANES OF 2D DETECTED BOARD EDGES. (3): IN METHODS [[9]] AND [[10], THREE
GEOMETRY CONSTRAINTS ARE cn;r (gR Lp;+ CtL) = 0 WHERE ©n; WITH i = 1,2,3 ARE THREE NORMALS OF 3D PERSPECTIVE PLANES. TO
REACH L2, THE LRF FRAME L1 WITH THE LASER LINE SEGMENTS CAN BE MOVED VERTICALLY ALONG THE CALIBRATION TARGET AND THEN ROTATED
AS LONG AS Lpy, Lpa AND Lp3 LIE ON THEIR GREEN 3D PERSPECTIVE PLANES. (4): IN APPROACHES [12]] AND [[11f], GEOMETRY CONSTRAINTS (UP TO
TWO) ARE Cn;.r (gR Ipi+ CtL) =0 WHERE ©n; WITH i = 1,2 ARE TWO NORMALS OF 3D PERSPECTIVE PLANES. BASE ON THE SAME PRINCIPLE,
THE LRF FRAME L1, IN ORDER TO GET Lo, CAN BE MOVED VERTICALLY ALONG THE BOARD, ROTATED ALONG THE LASER LINE DIRECTION £1, AND
ALSO ROTATED TOGETHER WITH THE LINE SEGMENT TO MAKE SURE “p; AND Lpy STILL LIE ON CORRESPONDING PERSPECTIVE PLANES.

the solution may converge to a local minimum which may not
be the global minimum. However, this good initial estimate is
not guaranteed in existing methods. Based on different type of
calibration targets, previous methods can be classified into four
categories: planar board with a checkerboard, triangle board, V-
sharped target and rectangular board with a line or a band. Next,
we detail the spatial ambiguity in each category.

Planar Board with a Checkerboard: 1In the approach of
Zhang and Pless [5]], all laser points must lie on the planar
calibration pattern, described as “n" (YR - “p; +“t;) =din
Fig.[3] Essentially, only two laser points are constrained from
the single snapshot (two geometry constraints), and constraints
of the rest of the laser points are redundant since they all be-
long to the same line segment. For the relative pose of the 2D
LRF-camera pair, only two out of six degrees of freedom are
constrained. The remaining four degrees have ambiguity such
that there are infinite solutions for R and “t7. As shown in
Fig.|3| the calibration board together with the camera frame can
be moved horizontally and vertically, and also can be rotated
along two different axes without violating the geometry con-
straints.

Triangle Board: The work of Li et al. [8] by using a trian-
gular board does not improve the constraints in the method by
Zhang and Pless [S]]: two laser end points Lp1 and Lpg must
lie on their corresponding border lines detected from the cam-
era, represented as Cn;-'— (gR Lp;+ CtL) = 0 where “n; with

, = 1,2 are the normals of the 3D perspective planes of 2D de-
tected border lines. These two constraints remove the ambiguity
of the horizontal translation and “triangular plane” removes the
ambiguity of the vertical translation for “t . However, there are
still three degrees of freedom that remain ambiguous for gR
(See Fig. [3). Essentially, the drawback is that the constraints
are imposed on the 2D image: there exist uncertainties for a
total of four unknown elements from views of depth and ori-
entation (two linear geometry constraints plus three nonlinear
constraints for YR to solve nine unknowns). Additional details
are explained in Section [[V]

V-sharped Target: The calibration target in [9] and [10] is
formed as V-shaped by two rectangular boards. Three laser end
points “py, “p, and “p3 must lie on their corresponding board
edges detected from the camera. Although the geometry con-
straints increase to three, the same drawbacks of spatial ambi-
guities still exist (the vertical translation of the calibration target
as in [5]], and the movement of laser points along their perspec-
tive planes as in [8])). See Fig. [3]for more details.

Rectangular Board with a Line or a Band: Methods in [11]]
and [12] can be generalized as using a rectangular board with
a black band (or a line) in the middle. Two laser end points
Lp; and “p, must lie on their band edges detected from the
camera. With no more than two geometric constraints, they also
suffer from spatial ambiguities. Thus, ¢ R and “t, have infinite
solutions (See Fig.[3).



In contrast to previous methods, our method builds sufficient
constraints, which guarantee the uniqueness of the solution for
each input observation. In theory, we can use only one snap-
shot to calibrate the 2D LRF-camera rig. In practice, an accu-
rate result can be achieved with only a few snapshots (previous
methods require 20 or more).

III. GEOMETRY CONSTRAINTS FORMULATION

Our calibration setup is shown in Fig.[2] A V-shaped calibra-
tion target is formed by two triangular boards with a checker-
board on each triangle. The angle between the two boards can
be arbitrary as long as the two boards are not coplanar (the angle
is 0 or 180 degree). In practice, the angle is set to arbitrarily ob-
tuse to get good camera views of both two boards, and does not
need to be known. P, (), R and O are four corners of the tar-
get. We define the triangles as 77 = APQC and 75, = APRC,
and let 73 = APQO and T, = APRO. For each observation,
the scanning plane of the LRF intersects with the three sides
PQ, PR and PO at points “p;, “p, and Lps respectively in
the LRF frame. Moreover, the camera and LRF should be ei-
ther synchronized or held stationary during data collection. The
camera is modeled by the standard pinhole model. We ignore
lens distortions in the rest of the paper, and assume that the im-
ages have already been undistorted, e.g. using the functions
from MATLAB Camera Calibration Toolbox [[15]].

Each observation of the calibration target consists of an im-
age acquired from the camera and a single scan obtained from
the LRF. The output of our calibration method is the relative
transformation (¢ R and position “t,) between the 2D LRF and
the camera. As shown in Fig. 2] the input features from a sin-
gle observation are: 1) three laser points “p;, “py and “ps
from the LRF; 2) two unit normals “n; and “ny of perspec-
tive planes 7%, T5 from the camera; 3) two unit normals Cn3
and “ny of board planes T3 and T} in the camera frame, and
two distances d; and dy from the camera to planes 75 and T,
respectively. Further details of feature extraction are described
in Section

A single laser scan consists of a depth value for each angle at
which the depth was sensed. In the LRF frame, we assume that
the sensor is at its origin L. Let us express the feature points “p;
as [z;,0, 2] ", where i = {1,2,3} are the indices of the feature
points. Let the feature normals n; of planes T} be [a;,bj,c;] T,
where j = {1,2,3,4}. We now have a correspondence between
a 3D point in LRF frame and a plane in camera frame. Thus,
our constraint is that the laser point, transformed to the cam-
era frame, must lie on the corresponding plane, which can be
divided into three parts.

First, laser points L p:1 and L p2 must lie on the planes 77 and
T5, respectively. Then, the first two constraints have the form

i={12} @

where YR € SO(3) and “t, are the unknowns. Second, for
laser points “p; and “ps, they must both lie on the plane 7.
Then, we have other two constraints

“nf (fR-pi+“t) =0,

“ny (CR-Lp;+ %) =di, j={1,3}. @3

Similarly, laser points “py and “ps must both lie on the plane

Ty. This gives two more constraints:

“n; ({R-Lpy+%tr) =do, k=1{2,3}. 4)
As stated in Section [II, once we solve for two columns r; and
r3 of gR, the second column r» can be obtained by

o =r3 Xrjp. (5)

To summarize, we have nine unknowns (in ry, r3 and Ct 1) and
a system of six linear (Eqs. (2)-()) and three nonlinear equa-
tions (Eq. (I)). In the next section, we show that these nine
constraints are independent and hence sufficient to obtain a so-
lution.

IV. UNIQUENESS OF THE SOLUTION

In this section, we prove that the features from a single obser-
vation of our calibration target constrain the calibration problem
to a finite number of solutions.

For a single observation of the calibration target, our method
builds up a system of Egs. (I)-@). In order to prove the pro-
posed method does not induce any ambiguity, the nine equations
must be independent. We show that the first six linear equations
are linearly independent. Since the other three nonlinear equa-
tions have no relationship with geometry constraints, they are
independent from the first six linear equations.

From the constraints formulation, the six linear equations can
be expressed as the following form

AX =B, X =[%.",r],ri]", (6)

where X is the vector of unknowns with €ty = [t1,t2,t3] ",
r| = [7”11,7‘2177’31}1— and r3 = [T13,’F23,’I‘33]T, B is the distance
vector denoted as B = [0,0,dy,dy,ds,ds] ", and A is the coef-
ficient matrix whose elements are expressed using components
from “n; and ij as defined in Section Lemma (1| below
states that the three unit vectors “n;, “ny and “njs are linearly
independent, which means they span the entire 3D space.

Lemma 1: Suppose “n; is the normal vector of plane T} for
1=1,2,3,4 as defined in Fig.|2| these normal vectors in any car-
dinality three subset of {“ny,“ny,“n3z,“ny} are linearly in-
dependent (totally four subsets: I. “ny, “ny and “ng; II. “ny,
“nyand “ny; M. “ny, “ns and “ng; IV. “ny, “ns and “ny.).
The proof is presented in Appendix [A]

As a corollary, the unit vector “ny can be expressed as the
combination of first three unit vectors “ny = v - n; + v -¢
ny + w -© ns. This allows us to perform Gaussian elimination
on Eq. (6) as follows:

o Keep row; and row, unchanged, and let Rows <— row;
e Let Row, < rows —row, and Rows < rowg — rows;
o Let Rowg < rows — (u-rowy +v -rows +w -rows).

Here, A is transformed as

a; by ¢ axy by gy az bz ez
az by ¢y asxs bawy comy aszy baza Cazo _

A — laz b3 c3 azxy bawy czmy azz bzz czz; — A — [Pu 79(5 ] (7)
az by c3 azrs byrs caws aszzz bazy caz 033 PH‘QH

ay by ¢y agxe byra cary  agze byza  cazo

ay by ¢y agrs bixs cqrs agzz bizz cazs
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with sub-matrices Py, Pg, Q, and Qg where

a; b ary bizy iz mz bz oazn
’Pa = |as by co Qa = |agwe boxy cComg aszo bozy Cozo
a3 by c3 azr3 byrz c3rz azzz byzz c3zs (8)
_ as by 3]’ azk, bsk, c3k,
Pﬁ = las by ¢ Qﬁ = | askg bikp cakp
a3 bz c3 aizka  biske ciska
. 21— 22 22 — 23 23 — 21
with k‘a = -, k‘g = k‘«{ = — and a13 =
T1 — T2 T2 — T3 T3 —T1

uay + was, b1z = uby + wbs, c13 = ucy + wes.
one more step of Gaussian elimination:

e Let Rowg < Rowg — w - Row.
The matrix A is transformed as

We perform

A= A= 0 ] 9)

03x3 Pp|Qp

with sub-matrices P and Qg where

a3 by c3 azky b3k, c3ky
Psg=|as bs al, Q,B = askg bsks C4k'f (10)
@ b o a1ko +asks  bika +bsks cika +csks

with ks = [E cag (ke — k,y)] Since laser features “p;, “po
U

and Lp3 are extracted from two distinct line segments, their
X1, coordinates cannot be equal otherwise these three points
are on a same plane from an invalid observation. Therefore, k.,
kg and k., can be calculated. After Gaussian elimination, the
distance vector B is transformed into a new vector denoted as
B=10,0,d1,0,0,d|", where d = -d2=wdi_

u(zo—x1) "

Let us first take a close look at the structure of A. Since we
know that unit vectors “n;, “ny and “njs are linearly indepen-
dent (Lemma E]) matrix P, is non-singular such that we can
reduce it to an upper triangular matrix. Thus, the first three lin-
ear equations are independent. Next, the unit vectors “n;, “n3
and “ny are also linearly independent (Lemma . Then, ma-
trix Pg is also non-singular and can be reduced into an upper
triangular matrix, which means the last three linear equations
are also independent. From the procedure above, we have just
reduced the A to a matrix which has a lower triangular corner

with zero elements, just shown as follows

IESES
V3x3

Osx3

A V3x3
Uszx3

033

; (1)

where 3/ represents a 3 X 3 upper triangular matrix and [J rep-
resents a 3 X 3 square matrix. From the matrix structure in
Eq. (TT), we can conclude that the six linear equations for geom-
etry constraints are linearly independent, which means plus the
other three nonlinear equations we can solve for nine unknown
components in ry, rg and S5, respectively. Hence, there is no
ambiguity in our proposed method in which the relative pose
between the LRF and the camera is determined from a single
snapshot of the calibration target. ]

V. ANALYTICAL SOLUTION

In this section, we first present how to obtain the solution for
the extrinsic calibration of the LRF-camera system from just
a single observation of the calibration target. Then, we show

the solution from multiple observations which is needed to re-
duce the effect of noise. Note that an analytical solution is ob-
tained in our constraints system, which is more general than the
closed-form solution in [[11]]. Moreover, we present a strategy
to exclude invalid solutions from the cheirality check.

A. From a Single Observation

We outline seven steps to solve the polynomial system
(Eqs. (I)-@)). For convenience, the geometry constraints
(Eqs. (2)-@)) are reformulated as follows

C=T (C L= c - .
n; (LR' pi + tL):di, i=1,2,...,6 (12)
where the parameters “n;, “p; and d; are defined as
Cn;=%n;, i=1,2 Lpi=tpy, i=1,3 di=0, i=1,2
Cnj=C%ng, j=3,4, ¢ pj="Lpa, =25, {dj=di, j=3,4. (13)
Chip=ny, k=56 |Lpr="Lps, k=46 k:dQ, k=56

STEP 1: The problem is reformulated in the view of nonlinear
optimization as stated in [[12]] shown below

argminJ = C T CR +% d;
. Z; Y =) . (4)
s.t. YRT-YR=1, det(fR)=

where N = 6. From the reformulated problem (14)), the optimal
solution for “t, is obtained as shown below

N
9J C-T(CR.Ls | C 71C=
. 15)
O =N chlc TORLp, |,
where N, —Zl ,9n,%0, anan—ZlN:lJicﬁi.

Lemma 2: N, is a non- smgular matrix and thus invertible.
Lemma[2]is proved in Appendix [B]

Since a laser point is defined as “p; = [7;,0,z;] ", we arrange
the expression of “t, in to the form
“tp =N, 1 (D — Nyry — Nora) (16)

“n;“n/ z; and N, = ZN “n,%n] z.
., N and D deﬁned as

7%n] 7 %n] Cal d;
Nz={ z 17/\@:{ : 1,/\/:{;17@:{51,(17)
(171\ CZN

we substitute in constraints (I2)) and obtain

in which N, = Zf\’
STEP 2: With AV,

ga:rl + ger = gdv

where G, =N, —NN;IN,, G. =N, — NN, TN, and G4 =

— NN, 1D, Then, r; is further expressed in terms of r3

(18)

r| = Hrs + K, 19)

where H = — (Glgz)fl GlG.and K = (g;;—gac)71 G4 Ga.



Note that G, G, is invertible. The proof is by contradic-
tion. We first assume the 3 x 3 matrix QIT G, is non-invertible
thus rank deficient. From , we have (QJQT) r| = g;gd -
g;gzrg, which is a Ax = b system for solving r;. Then for
any given r3 (thus b is given), the rank-deficient A results in
infinite solutions for x (which is ry). It means that our system
has ambiguity, which is in contradiction to the uniqueness proof
in Section Hence, g;f G, is invertible. [ |
STEP 3: Now we can eliminate r; by substituting (T9) in the
three remaining second order constraints (I). After full expan-
sion, we have the following

.2 . 2 . -2 . . e —
€21713 + €22713723 + €23733 + €24713733 + €257237'33 + €267'33 + €27713 + €28T23 + €29733 = 0 (2 1 )

ris+r35+ 135 —1=0, (22)

2 L eom orar2, 4o - = Foal S S - - -
€11773 + €127'13723 + €13753 + €14T137'33 + €157237'33 + €16733 + €17713 + €18723 + 10733+ =0

where the coefficients e;; and the constant /m are computed in a
closed form in terms of the components of H and /. To solve
the polynomial system (Egs. (20)-(22)), we aim to obtain a uni-
variate polynomial in r33 using Macaulay resultant [[16]. This
multivariate resultant is the ratio of two determinants, the de-
nominator (23) and numerator (24))

€11 0 0
_ 2
0 e 1|, Ejg=cepr33+egraz+m  (23)
Ei ez 1
[e1r 0 0 0 0 0 0 0 0 0 0 0 0 0 017
ez €11 0 0 0 0 1 0 €21 0 0 0 0 0 0
Fy 0 ey 0 0 0 0 1 0 e 0O 0 0 0 0
€13 €12 0 €11 0 0 0 0 2 0 1 0 0 0 0
Eis Euy enn 0 €11 0 0 0 Eyy e 0 1 0 €21 0
Eg 0 Eyy 0 0 €11 0 0 0 FEyy 0 0 1 0 es1
0 e3 0 e2 0 0 1 0 e3 0 0 0 0 0 0
0 Fis ey By en 0 0 1 By ey 0 0 0 en 0], (24)

0 Ei Eis 0 Euy ez Ez 0 Ex Ex 0 0 0 Ea exn
0 0 Eg 0 0 Fu 0 E3 0 Eyxp 0 0 0 0  FEy
0 0 0 e3 0 0 0 0 0 0 1 0 0 0 0
0 0 0 Eis eg 0 0 0 0 0 0 1 0 €23 0
0 0 0 Eg Es ez 0 0 0 0 By 0 1 By ex
0 0 0 0 FEg Es 0 0 0 0 FEs1 0 Ey Eos
LO 0 0 0 0 FEg 0 0 0 0 0 FEs; 0 FEol

with elements E14, F15, E'31, Fo4, Eos and Eog defined as

2
Eq4 = ewrsz +e1r, E15 =eisr33+e1s, 31 =133—1 (25)

2
Eoy = e24733 + €27, Fas = ea5733 + €28, Fog = e26733 + €29733

We set this resultant to 0, and obtain the univariate polynomial
equation

91735 + gorls + 93755 + 94735 + 9573 + gords + 97735 + gsras + 90 =0, (26)

where the coefficients g; are computed in closed-form of the
coefficients of Eqgs. (20)-(22).

Although the eighth-degree (higher than four) univariate
polynomial P does not have a closed-form roots expression, we
can obtain its all roots by computing the eigenvalues of its com-
panion matrix C(P) [17]. For numerical stability, we approx-
imate the roots through an iterated method [ 18] which uses a
generalized companion matrix C(P,S) constructed from P and
initialized by C(P). Here, C(P) and C(P,S) are expressed as

0 1 0 - 0 5 0 0 Lol o s

00 1 - 0 0 s o 0 b B o s
CE)=1 . : F Spe®S) =1 = ] (27)
@ e _wm ... _@ 0 0 - s [N

91 91 91 91

where 8 = (s1,...,55), li = | groh| and Q'(s;) = [T,;(si —
s;). S is first initialized as the eigenvalues of C(P). Then for
each iteration, S is updated as the eigenvalues of C(P, S) until
S is converged. Eight possible solutions for r33 are obtained.
STEP 4: Each solution for r33 (numeric value r33) corresponds
to a single solution for the rest of the unknowns. For numerical
stability, we compute the Sylvester resultant [16] of Eq. (20)
and Eq. (22) w.r.t. ro3. With the determinant of this resultant
set to zero, we obtain a quartic polynomial P in rq3

fi2 €12713 + €15733 + €18 €13 0
_ 0 fiz e12r13 +e15733 e ez |
Pr=det| |, 02 0 1 o [=0 (28)
0 25+ 1332 —1 0 1

where fi2 = e117%5 + €14713733 + e16733° + €171z + e19ras +
m. Similarly, we compute the Sylvester resultant of Eq.
and Eq. @I) Ww.I.t. 23, and set its determinant to zero to obtain
another quartic polynomial Py in 713. To solve this overdeter-
mined system, we aim to minimize the sum of the squares of
P, and P, and thus set the derivative of P% + P% W.I.t. 713
to zero to get a seventh-degree polynomial. Seven solutions for
r13 obtained by iterated method mentioned above are tested if
both Py (r13) =0 and Py(ris) = 0.

After substituting the numeric solutions 713 and 733 into
Egs. 20)-(22), we perform the same optimization method to
solve the overdetermined system for ry3. Note that we have
a closed-form roots expression for the third-degree polynomial
obtained from the derivative of the cost function w.r.t. ro3 (the
sum of the squares of three polynomials in (20)-(22)). We only
keep the solution 53 if all Eqs. (20)-(22) hold.

STEP 5: After obtaining rs, r; can be calculated from Eq.
and ry can be retrieved from Eq. . Finally, €t can be ob-
tained using Eq. (I3).

Eight possible solutions give us up to four real solutions. Four

complex solutions can be eliminated as follows. We square all
the elements of ry, ro, r3 and Ct,, and check if they all have
non-negative real parts.
STEP 6: In practice, while the solution for rs fails to deliver a
real solution in the presence of noise, we use its projection on
real domain as the initial value. Eqs. (20)-(22) are then treated
as a whole F(x) = 0 for r3, which can be solved using the
Trust-Region Dogleg method [[19] [20]. At each iteration k, the
trust region subproblem here is

argmin %f(xk)Tf(xk) +d] T (xx) T F(xk) + %dkj(xk)T](xk)dk
i , (29)
S. t. Hd]fH <A

where Ay, is updated, and the Jacobian is defined as J(xy) =
[VF1(xk), VFa(xk), VFs(xz)] . The step dy, to obtain X1
is then constructed as

)\dCa

1
=T @0
de+ (A~ )(den — de). G0

" 1<A<2
where A is the largest value such that ||dg|| < Ag. With
gr = J(x) " F(xx) and By = J(x3) " J(xx), the Cauchy
step and the Gauss-Newton step are respectively defined as

d B8 o and d B!
— k an — —B; .
C g, Brex gk GN k 8k
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{La}

Q@

Fig. 4
FOUR POSSIBLE REAL SOLUTIONS ARE SHOWN AS A COMBINATION OF
THE LRF FRAME AND THE CAMERA FRAME ({L1,C4}, {L2,C1},
{L3,C2} AND {L4,C2}). THE UNIQUE SOLUTION {L1,C1} IS
DETERMINED THROUGH THE CHEIRALITY CHECK.

STEP 7: We must choose the unique solution from invalid so-
lutions through the cheirality check. Fig. ] shows four possi-
ble real solutions, which are {L1,C1}, {L2,C1}, {L3,C2} and
{L4,C2} in terms of a combination of the LRF frame and the
camera frame.

The unique solution { L1, C4 } is determined as follows. Both
the LRF and the camera must face towards the same direction,
and three laser points “p;, “py and “ps after transformation
to the camera frame must be in front of the camera. These two
conditions are

T ¢
n, -L1R~nz >0,

T (R4, ) 50, = {1,2,3)

z

n, =[0,0,1]"
(31)

B. From Multiple Observations

Multiple observations from different views can be used to
suppress noise. The problem in this case is formulated as fol-
lows

argminzz (CﬁiTj (ER P+ CtL) - Jij)Q

ROt =1 j=1 )

RT-YR=1, det({R)=1

(32)

S. L.

where N = 6 and M is the total number of different multiple
observations. The solution is obtained through the seven steps
mentioned in Subsection[A] As the rotation is represented by the
Rodrigues’ formula, the calibration result is further refined us-
ing Levenberg-Marquardt (LM) method [22]. Our solution
in (32) serves as the accurate initial value.

VI. DETAILS OF THE CALIBRATION APPROACH

We explain below how to accurately extract the features re-

quired for our method. These are four normal vectors “n;

Fig. 5
A CALIBRATION TARGET BUILT IN A CONVEX V-SHAPE IS PUT ON THE
TABLE. ACCURATE DATA EXTRACTION FROM BOTH THE LRF AND THE
CAMERA IS PERFORMED BY LINE INTERSECTION AND OPTIMIZED LINE
DETECTION.

pn = 4.243e-07, 0= 1.2622e-05
1200 T T T T T

1000

Count
[=)]
o
o

0
11 -10 -9 -8 -7 -6 -5 -4 -3
log10 of overall computational error for camera-LRF pose

Fig. 6
THE HISTOGRAM OF COMPUTATIONAL ERRORS FOR COMPUTED ROTATION
AND TRANSLATION IN 10* RANDOM AND NOISE-FREE MONTE-CARLO
TRIALS.

(1=1,2,3,4) and two distances d; (j = 1,2) from the camera,
and three laser edge points “py, (k = 1,2,3) from the LRF.

A. Data from the LRF

Our calibration can be built in a convex shape as shown in
Fig. 5] We can put the calibration target on a planar object
(such as table, wall and the ground) such that “p;, “p, and
Lps are accurately determined by the intersection between line
segments. Specifically, the laser intersection with the objects
are first segmented into four parts “1;, ©1y3, ©lp3, and %1,
(e.g. using the Ramer-Douglas-Peucker algorithm (RDP) al-
gorithm [23]). We then fit a line to each segment using the
total least squares method . Lp, is thus obtained by the
intersection of lines “1; and ©1,3. Similarly, Zp, and “p3 are
respectively determined by the other two pairs {£15, %153} and
{Fli3, M a3}

B. Data from the Camera

Using our calibration target with two checkerboards, the cam-
era calibration is first performed by the MATLAB Toolbox [[15]).
Two normal vectors “n3 and “ny of planes T3 and T} can be
obtained directly from the calibration toolbox. Each checker-
board is on the plane zr = 0 in its own world frame. For ex-
ample, we have the rotation §, R and translation “t7,, from the



calibration result, which represent the orientation and position
of the plane T3 w.r.t. the camera. “ns is just minus the 3rd
column of % R, and the distance d; from the camera to T3 is
dy = Cn; . tr,. Similarly, Cn,4 and ds can be also calculated.

From the image (See Fig. , the unit line directions of P7Q
PR and PO are projected as v, vy and as v, and the projec-
tion point of the vertex P is pp. As stated in [13]], we perform
a weighted optimization initialized by the LSD [25]] line detec-
tor to accurately estimate the set {pp,v1,Vva,vs}. Specifically,
only the pixels within a rectangular region S; are considered for
fitting v;. Let i7; be the normal of v;. Hence, the optimization
problem is expressed as

3 N
argmin Z Z G?-((p! —ppr) 1) (33)

PP,V1,V2,V3 g j=1
where each region .S; has the number N; of valid pixels p{
whose gradient magnitudes G7 as their weights are above a
threshold. Given the intrinsic matrix K, the normal vector “n;
_ : : Cp. — K v
(2 =1,2) is obtained by “n; = KT
C. Snapshot Selection

The solution from a single snapshot constrains three laser
points “py (k = 1,2, 3). In the presence of noise, it should also
guarantee that laser points “p¢, from the line £1;3 and LpJ,
from ©ly3 must respectively lie on 73 and 7. We determine
a snapshot as ill-conditioned if the average squared distance of
laser points to their corresponding planes is larger than a thresh-
old €2. From multiple observations, it can guide us to select
well-conditioned snapshots for further accuracy. Given the so-
lution $ R and ©t,, we will keep this snapshot if it satisfies

Yo (Ond (G Pply +C60) — Y O (PRIl +) )
iz 2N13 = 2No3

(34)

<é,

where ©1;5 and Zl,3 are treated equally, and have N3 and N3
points, respectively. The average squared distance of each line
is first calculated and then half weighted as the left two terms of
summation in Eq. (34).

VII. SYNTHETIC EXPERIMENTS

For the simulation setting, the obtuse angle between two tri-
angle boards of the calibration target is set to 150°. Then, we
uniformly and randomly generate roll, pitch and yaw in the
range of +45° for the orientation of the LRF w.r.t. the cam-
era, and three components of the position from 5 to 30 cm. For
each instance of the ground truth, we randomly generate the ori-
entation and position of the calibration target within the range
of £45° and 50 to 150 cm. In the extreme case, the position
angle between the LRF-to-target direction and the camera-to-
target direction is more than 33°. It includes the scenario in
proportion that the camera-to-LRF distance is large, as long as
the target is visible from two sensors.

A. Numerical Stability

We performed 10* Monte-Carlo trials to validate the numeri-
cal stability of our solution in the noise-free case. For each trial,

only one snapshot of the calibration target is needed. The er-
ror metric e = ||[Ry:|t,:] — [R|t]|| 7 is the Frobenius norm (F)
of the difference between the ground truth (g¢) and our solu-
tion. The histogram of errors is shown in Fig.[6] The computa-
tional error varies but the accuracy is still high (around 10~%). It
demonstrates that our method correctly solves the LRF-camera
calibration problem, which further validates the sufficiency of
the constraints from a single snapshot.

B. Sensitivity to Data Noise

This simulation tests the sensitivity of our solution to the
noise in feature data. Two sources of error are taken into ac-
count: the laser depth uncertainty along the beam direction and
the pixel uncertainty in line detection. Based on the practical
setting, we respectively set the standard deviations (STDs) of
laser noise and pixel error as 0; = 10 mm and oy = 3 px in
the 640 x 480 image. A factor k, varies from O to 1 to com-
bine the noise information as k,o; (i = 1,2) [13] from both
sensors in one plot. 1000 Monte-Carlo trials are performed,
each of which needs only one snapshot. The metrics for angular
error (the chordal distance [[26] of rotation) and distance error
(translation) are respectively ey = 2arcsin(ﬁ||f{ —Rgill»)

and eg = ||t — ty¢ 2. Fig. demonstrates that as the noise level
increases, our solution is robust to the image noise but has a
greater sensitivity to the laser depth noise.

C. Sensitivity to Angle between Boards

The sensitivity of our solution to the angle between two trian-
gle boards of the calibration target is tested. We set 07 = 10 mm
and o = 3 px. The angle varies from 30° to 170°. Fig.[8|shows
the means and STDs for both angular and distance error. Our
solution is not sensitive to the angle between boards but still has
the smallest errors around 135°.

D. Noise Reduction

We report a simulation designed for testing the noise reduc-
tion of our solution when using multiple observations. Here, o1
varies from 1 mm to 10 mm with o5 set to 3 px. At each noise
level, the means and STDs are calculated for both ¢y and ¢4
from 1000 Monte-Carlo trials. From Fig.[9] we observe that as
number of observations increases, the means and STDs of both
errors asymptotically decrease. Moreover, with a small number
of snapshots, our solution can achieve a highly accurate initial
value for further optimization. Specifically, ep and e, are re-
spectively around 0.5° and 5 mm for only 5 snapshots.

E. Snapshot Selection

With snapshot selection, additional accuracy is achieved (See
Fig. in the presence of noise oy = 10 mm and o2 = 3 px.
The distance threshold ¢ is set to 5 mm. The errors eg and ey
are further decreased by nearly 50% compared with the solution
without any single-snapshot check. Specifically, ey and ey are
respectively around 0.25° and 2 mm for only 5 snapshots. Thus,
our method can guarantee a high accuracy of the solution when
using multiple snapshots.
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Fig. 7
ERRORS IN ESTIMATED ROTATION AND TRANSLATION AS A FUNCTION OF
THE LASER NOISE WITH DIFFERENT LEVELS OF THE PIXEL NOISE. EACH
POINT REPRESENTS THE MEDIAN ERROR FOR 1000 MONTE-CARLO
TRIALS. EACH LINE CORRESPONDS TO A DIFFERENT LEVEL OF THE PIXEL
NOISE VERSUS THE LASER NOISE CHANGED BY THEIR OWN STDS.
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Fig. 9
MEANS AND STDS OF THE ERRORS FOR ESTIMATED ROTATION AND
TRANSLATION VERSUS THE NUMBER OF OBSERVATIONS OF THE
CALIBRATION TARGET IN 1000 MONTE-CARLO TRIALS WITH THE LASER
NOISE CHANGED BY ITS STD.

VIII. REAL EXPERIMENTS

To further validate our method, we perform real experiments
in comparison with other two existing methods [3] and [[10].

A LRF Hokuyo URG-04LX is rigidly mounted on a stereo
rig which consists of a pair of Point Grey Chameleon CMLN-
13S2C cameras (See Fig.[T). Sensors are synchronized based
on time stamps. The LRF is set to 180° horizontal field of
view, with an angular resolution of 0.36° and a line scanning
frequency of 10 Hz. Its scanning accuracy is =1 cm within a
range from 2 ¢cm to 100 ¢cm, and has 1% error for a range from
100 cm to 400 cm. The cameras have a resolution of 640 x 480
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Fig. 8
MEANS AND STDS OF THE ERRORS FOR ESTIMATED ROTATION AND
TRANSLATION VERSUS THE ANGLE BETWEEN TWO TRIANGLE BOARDS OF
THE CALIBRATION TARGET. EACH POINT REPRESENTS THE MEAN ERROR
WITH ITS STD FROM 1000 MONTE-CARLO TRIALS. THE ERRORS GENTLY
VARY AS LONG AS THE ANGLE BETWEEN BOARDS IS OBTUSE.
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Fig. 10
THE COMPARISION OF MEANS AND STDS OF THE ERRORS FOR
ESTIMATED ROTATION AND TRANSLATION BETWEEN
SINGLE-VIEW-CHECK AND WITHOUT-ANY-CHECK VERSUS THE NUMBER
OF OBSERVATIONS OF THE CALIBRATION TARGET IN 1000
MONTE-CARLO TRIALS.

pixels, and are pre-calibrated based on [28]. The images prior to
data processing are warped to get rid off the radial and tangent
distortions.

A. Comparison with Existing Methods

We compare our method to two state-of-the-art algorithms
and using the ground truth of the stereo-rig baseline.
Specifically, let T = [ &) t] represent the transformation (rota-
tion and translation) between two frames. For each method, the
LRF is first calibrated w.r.t both left and right cameras to obtain
gl T and ng. We then compute the relative pose (baseline) be-
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COMPARISONS WITH THE METHOD OF ZHANG AND PLESS |E[] AND THE METHOD OF KWAK ET AL. [[10]]. 1ST AND 2ND: MEANS OF ESTIMATED
ROTATION AND TRANSLATION ERRORS FOR ALL THREE METHODS AS THE NUMBER OF OBSERVATIONS OF THE CALIBRATION TARGET INCREASES; 3RD
AND 4TH: STDS OF ESTIMATED ROTATION AND TRANSLATION ERRORS FOR ALL THREE METHODS AS THE NUMBER OF OBSERVATIONS INCREASES.

tween stereo cameras and compare it with the the ground truth
g;T calibrated from the toolbox . Hence, the error matrix
is T, :g: T-C'T-(Y"T)~!, where R and ||t.||2 are respec-
tively compared with the identity and zero.

The stereo cameras are calibrated for 10 times where each
time 20 image pairs are randomly chosen from 40 pairs. With
the rotation represented by the Rodrigues’ formula, the means
of the rotation angle and the baseline distance are respec-
tively 0.0137° and 96.0511 mm (the translation is [—96.0505,
—0.3035, —0.1326]7 in mm). Because of their low STDs
0.0018° and 0.2742 mm (within 0.01° and 1 mm), we treat their
means as the ground truth. The distances between the LRF and
the stereo cameras are approximately 100 mm and 150 mm. 30
best observations of each method are obtained using a RANSAC
framework (5 snapshots are randomly chosen from a total 50).
We randomly select subsets of 1, 5, 10, 15 and 20 observations
to perform the calibration between the LRF and the stereo rig.
The calibration is performed 10 times for each random subset.

Fig. [IT] shows that our method has the smallest errors of
both rotation and translation as the number of observations in-
creases. Specifically, the mean errors from 20 observations are
respectively 0.3° and 3.4 mm almost three times lower than the
method of Zhang and Pless (1.3° and 12.0 mm) and the method
of Kwak et al. (1.0° and 12.6 mm). Moreover, our method can
obtain a reasonable result even using only one snapshot, which
is not possible for the other two methods. In other words, our
method can achieve an accuracy at the same level but using the
smallest number of observations.

B. Real Scene Validation

This experiment from the real scene tests the calibration re-
sults between LRF to both left and right cameras, respectively,
obtained by two existing methods [5]] [10] and our method for
comparison (See Fig. [I2). We generate a dataset of 30 input
observations for each method using their own calibration tar-
gets. The calibration results are obtained from 20 observations
randomly chosen from 30 in total of each method. We then
respectively test them using the stereo images from new obser-
vations of our calibration target which are not involved in the
calibration process. From the comparison, we observe that the
laser scanning lines for our method more reasonably match the

Fig. 12
THE PROJECTION OF LASER POINTS SCANNED ON THE CALIBRATION

TARGET ONTO THE IMAGES FROM BOTH LEFT AND RIGHT CAMERAS USING
THREE DIFFERENT METHODS. CYAN BOXES SHOW THE CLOSE-UP OF
LASER POINT PROJECTION. METHODS [J5]] AND ARE GREEN AND

YELLOW COLORED, RESPECTIVELY. OUR APPROACH IS RED COLORED.

calibration target (board boundaries) from both left and right
cameras. Thus, it validates the correctness of our calibration
results of each LRF-camera pair.

IX. CONCLUSION

In this paper, we presented a novel method for calibrating
the extrinsic parameters of a system of a camera and a 2D laser
rangefinder. In contrast to existing methods, our coplanarity
constraints for feature data suffice to unambiguously determine
the relative pose between these two sensors even from a single
observation. A series of experiments verified that the number of
observations can be drastically reduced for an accurate result.
Our solution technique was also extended to the case of multi-
ple observations to reduce noise for further refinement. We are
working on releasing our code [29].
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APPENDICES
A. PROOF OF LEMMA 1

From Fig. [2| “n; is the normal vector of plane T} for i =
1,2,3,4 and we claim that these normal vectors in any cardinal-
ity three subset of {“ny,“ny,“nz,“ny} are linearly indepen-
dent. It is obvious that there are totally four subsets: I. Cny,
Cnsy and “ng; IL “ng, “ns and “ny; OL “ng, “ns and “ny;
IV. “ny, “ns and “ny. We will prove separately for each sub-
set and show that subsets I and II are symmetric arguments, and
subsets III and IV are also symmetric arguments.

According to the geometry setting in Fig. 2| we notice that for
each subset three different planes have a common intersection
point P, which means there is no parallelism between them. We
let 115, 133, lo3 and 134 respectively denote the directional unit
vectors of the lines PC, TQ, PR and PO wurt. the camera
frame.

So let us first prove the claim for subset I: ®ny, “ny and
n3. We assume that these three normal vectors are linearly
dependent, which means there exists three nonzero coefficients
a, B and 7 such that an; 4+ %ny +7“n3 = 0, otherwise
two of three planes would have parallelism (e.g. « = 0 such
that 5%ny, = —y“n3) or one plane of them reduces to nonex-
istence (e.g. a = 3 = 0 such that ")/Cl’lg =0). Thus, “nj can
be represented as the combination of “n; and “nj. Since the
intersecting line of 7} and T is PC, we have the following

C
C

T .C —
112~ n; =

T C
= li5-"n3=0.
- “ny =0 -

(35)

It means that the line PC is on the plane T3 given the fact that
they share a common point P. It is a contradiction unless cam-
era center C is also on the plane 73, which is a useless case
since camera cannot capture the checkerboard on 75. Thus, the
normal vectors “n;, “ny and “nj are linearly independent. It
is similar for subset II that we would have a contradiction that
the line PC is on the plane T} based on 1, - “ny = 0 if “ny,
Cn,y and ©ny are linear dependent. So we can conclude that
these vectors in both subset I and II are linearly independent.
Next let us focus on the claim for subset III: “n;, “ns and
ny. We assume that these three normal vectors are linearly
dependent, which means there exists three nonzero coefficients
a, (3 and v as explained in subset I such that a“n; + 3%n3 +
’ycn4 = 0. Thus, “n; can be represented as the combination of
“n3 and “ny. Since the intersecting line of T3 and T is PO,
we have the following

C

1;4-Cn3 =0

T C
= l3,-"n; =0.

(36)

It means that the line PO is on the plane T given the fact that
they share a common point P. It is a contradiction unless the
corner O of the calibration target is also on the plane 73, which
is a useless case since camera cannot capture the checkerboard
on T3. Thus, the normal vectors “ny, “n3z and “ny are linearly
independent. It is similar for subset IV that we would have a
contradiction that the line PO is on the plane T» based on 1], -
ny =0 if “ny, “ng and “ny are linear dependent. So we can

conclude that these vectors in both subset III and IV are also
linearly independent.

Above all, it is proved that three normal vectors in each subset
from I, II, III and IV are linearly independent. |

B. PROOF OF LEMMA 2

From Appendix|A] we know that any three of normal vectors
ny, “no, Cng and “ny can span the whole 3D space. Based
on the definitions in (13]), the matrix in (15) is

N C- C=
N, = Zi:l Cnlcnj = Cnlcan + ancn;r + 2<7n;;(7n3T + 20n4cn1, (37)

which is a symmetric matrix. We now show that this matrix is
non-singular.

As is known, the eigenvalues of a positive definite matrix are
all positive [30]. Further, we know that a positive definite matrix
is always invertible [30]. From the properties above, we just
need to prove that N, is positive definite. Let v # 0 be an
arbitrary non-zero vector. Then we calculate the quadratic form

VTNV = (“n]v)?+ (Cnjv)* +2(niv)* +2(Cn]v)* > 0.

(38)

We assume that v' N,v = 0, which means “n/v = 0 for

i = {1,2,3,4}. However, since any three of these four normal
vectors are linearly independent, we get a contradiction that, for
example, [“n;,“ny, “n3)"v = 0 if and only if v = 0. Thus,
we can conclude that

vIN,v = (Canv)2 + (cnva)2 +2 (Cn;v)2 +2 (Cnlv)2 > 0.

(39)
Thus, matrix N, is positive definite and always invertible. N
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