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A Novel Method for the Extrinsic Calibration of
a 2D Laser Rangefinder and a Camera
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Abstract—We present a novel method for extrinsically calibrating a

camera and a 2D Laser Rangefinder (LRF) whose beams are invisible from

the camera image. We show that point-to-plane constraints from a sin-

gle observation of a V-shaped calibration pattern composed of two non-

coplanar triangles suffice to uniquely constrain the relative pose between

two sensors. Next, we present an approach to obtain analytical solutions us-

ing point-to-plane constraints from single or multiple observations. Along

the way, we also show that previous solutions, in contrast to our method,

have inherent ambiguities and therefore must rely on a good initial esti-

mate. Real and synthetic experiments validate our method and show that

it achieves better accuracy than previous methods.

Index Terms—2D Laser Rangefinder (LRF), Camera, Extrinsic Calibra-

tion, Analytical Solution.

I. INTRODUCTION

MANY robotics systems rely on cameras and laser range

finders to compute environment geometry [1]. Two di-

mensional (2D) Laser Range Finders (LRFs) which measure

depth along a single plane are commonly used due to their low

weight, low cost and low power requirements.

Taking advantage of measurements from an LRF or a LIDAR

combined with a camera, however, requires precise knowledge

of the relative pose (orientation and position) between them.

This is a classical extrinsic calibration problem where the ob-

jective is to determine the transformation between two coordi-

nate frames. Establishing correspondences between two sensors

is easier for 3D LIDARs since distinct features can be identi-

fied both among laser points and in the camera image. Exist-

ing methods include 3D LIDAR-camera calibration by using a

circle-based calibration target [2] and an arbitrary trihedron [3].

Extrinsic calibration of a 2D LRF is more challenging be-

cause a 2D LRF produces only a single scanning plane for each

pose which is invisible from the regular camera. This makes

it difficult to find correspondences. Therefore, additional con-

straints must be used. We note that if we were given the cor-

respondences between laser points and their images (e.g. IR

camera) the extrinsic calibration problem reduces to a standard

PnP (Perspective-n-Point) computation [4]. However, in our

case, these correspondences are unknown.

There is a large body of work on the LRF-camera calibration.

One of the earliest methods is presented by Zhang and Pless [5]

using points-on-plane constraints. However, only two degrees

of freedom are constrained for the relative pose between the

camera and the LRF from a single input observation. There-

fore, this method requires a large number of different observa-

tions with a wide range of views (more than 20 snapshots) for
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the analytical solution, as well as calibration details and additional experiments.
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Fig. 1

THE CALIBRATION SYSTEM INCORPORATING A CALIBRATION TARGET

AND A CAPTURE RIG; LEFT: THE CALIBRATION TARGET FORMED BY TWO

TRIANGULAR BOARDS WITH A CHECKERBOARD ON EACH TRIANGLE;

RIGHT: THE CAPTURE RIG CONSISTING OF A 2D LRF AND STEREO

CAMERAS. (ONLY ONE CAMERA IS INVOLVED IN THE CALIBRATION

PROBLEM, THE OTHER IS JUST FOR TESTING IN REAL EXPERIMENT.)

accuracy. Vasconcelos et al. [6] presented a minimal solution

by forming a perspective-three-point (P3P) problem to address

disadvantages in [5]. Zhou [7] further proposed an algebraic

method for extrinsic calibration. Both techniques require mul-

tiple observations (at least three), and have inherent degeneracy

where intersecting lines of two planes with the third plane are

parallel, and three intersecting points of laser segments from

three input observations are on a danger cylinder.

With point-on-line constraints, the approaches in [8] and [9]

use a black triangular board and a V-shaped calibration target

respectively. The results from these two methods are not accu-

rate due to the sparse sampling of laser points. Further, a large

number (usually more than 100) of images are needed to com-

pensate for the lack of constraints for each input observation.

Based on the ideas in [8] and [9] (minimizing the projection

distance on the image between intersected laser points and the

feature lines), the authors in [10] also propose to use a V-shaped

calibration target. They increase the laser points’ sampling for

each observation by introducing more feature lines and virtual

end-points, but the same drawback still exists as in [9] and [10].

Therefore, they still need a large amount (around 50) of differ-

ent observations to achieve a reasonable result.

The method in [11] provides an analytical solution using a

white board with a black band in the middle. It needs only six

different observations. Similarly, the authors in [12] give an

analytical solution to this problem using a white board with a

black line in the middle. Compared with [11], it further com-

putes the optimal least-squares solution to improve the robust-

ness to noise. The analytical solutions in [11] and [12] are ob-

tained by minimizing the sum of points-on-plane errors, where
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Fig. 2

A SINGLE PAIR OF LRF-CAMERA OBSERVATIONS OF OUR CALIBRATION TARGET WITH THE DEFINITION OF PARAMETERS FOR GEOMETRY CONSTRAINTS.

(A): THE OUTPUT OF THE 2D LRF-CAMERA CALIBRATION IS THE RELATIVE TRANSFORMATION C

L
R AND CtL . (B): THE INPUT DATA FROM THE LRF

ARE THREE LASER POINTS Lp1 , Lp2 AND Lp3 . (C): TWO INPUT NORMALS FROM THE CAMERA ARE Cn1 AND Cn2 . (D): THE OTHER INPUT DATA FROM

THE CAMERA ARE TWO NORMALS Cn3 AND Cn4 AND TWO DISTANCES d1 AND d2 .

only perspective planes from the image are considered instead

of general 3D planes. However, both of these two methods still

cannot avoid using a large number of different observations for

accuracy because of the insufficient constraints for each input

observation.

The work described in [13], presents an approach which only

requires the observation of a scene corner (orthogonal trihedron)

commonly found in human-made environments. This method

builds line-to-plane and point-to-plane constraints, which re-

quires at least two input observations. However, the calibration

accuracy highly depends right angles between three orthogonal

planes, which are difficult to be made exactly 90◦ in practice.

When multiple observations from different views are needed for

additional accuracy, the right angle between two walls often af-

fects the laser measurement: scanned laser line on one wall is

curved if laser beams point almost perpendicular towards the

other wall for a good view. Our method accommodates an arbi-

trary obtuse angle in our calibration target (See Fig. 1) so that it

can adjust the view angle between the pattern and linear beams.

The authors in [14] further extend the work [13] by deriv-

ing a minimal solution from a single input observation. The

solution, however, is obtained by two procedures (calibration

between the trihedron and the LRF, and calibration between the

trihedron and the camera), and thus has accumulated error due

to the data noise in each procedure. Specifically, in calibration

between the trihedron and the camera, they determine the scale

of the translation by using the actual length of two edges of the

trihedron which is inconvenient to be built and difficult to be

measured accurately.

In theory, LRF-camera calibration from a single input obser-

vation is important since it means that the geometric constraints

from a single view is sufficient. In practice, it further implies

that users, when taking multiple input observations for further

accuracy, do not need to be concerned about degenerate cases in

which the input observation is invalid. Our triangular V-shaped

calibration target (See Fig. 1) has two checkerboards, which are

simultaneously and accurately estimated in camera calibration.

Further, the angle between two triangular boards of the target

can be arbitrary which makes it convenient to build. We study

this extrinsic calibration problem and make the following con-

tributions:

• We show that by minimizing the sum of points-on-plane

errors, a single observation of two non-coplanar triangles

sharing a common side (See Fig. 1) suffices to unambigu-

ously solve the calibration problem.

• Even though planar, triangular or V-shaped rectangular

patterns have already been proposed to solve the calibra-

tion problem, we show that previous methods do not suf-

ficiently constrain the calibration problem to allow for a

unique solution. Therefore, they rely on a large number of

measurements and a good initial estimate.

• We also present a robust analytical solution to the system

of points-on-plane constraints for calibration from a single

observation in the presence of noise.

• For additional accuracy, we show that by using only a few

additional observations, our method achieves significantly

smaller error than existing methods.

II. SPATIAL AMBIGUITIES IN PREVIOUS METHODS

The objective of 2D LRF-camera calibration is to obtain the

relative pose between these two sensors: the orientation C
LR and

position CtL of the LRF frame {L} with respect to (w.r.t.) the

camera frame {C} (See Fig. 2). Spatial ambiguity means that

there are infinite solutions for C
LR and CtL from a single input

observation of the calibration target.

Without loss of generality, the laser scanning plane is defined

as the plane YL = 0 such that we do not have an explicit de-

pendence on the second column vector r2 of C
LR when a 3D

laser point Lp = [xL,0, zL]
⊤ is transformed to the point Cp =

[xC , yC , zC ]
⊤ in the camera frame by Cp = C

LR ·
Lp+ CtL.

Since C
LR is an orthonormal matrix, we have three constraints

for its first and third columns (r1 and r3)

r⊤3 r3 = 1, r⊤1 r1 = 1, r⊤3 r1 = 0. (1)

Thus, we need at least six additional geometry constraints for

solving nine unknowns (in r1, r3 and CtL).

The spatial ambiguity is caused by the lack of sufficient ge-

ometric constraints from a single input observation. The disad-

vantage of insufficient constraints is that a large number of snap-

shots of the calibration target from different views are needed

to reduce the ambiguity by minimizing the geometry cost func-

tion. A good initial estimate thus must be required otherwise
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Fig. 3

EXISTING METHODS DO NOT SUFFICIENTLY CONSTRAIN THE PROBLEM FROM A SINGLE INPUT OBSERVATION. (1): IN THE APPROACH OF ZHANG AND

PLESS [5], ESSENTIALLY, ONLY TWO LASER POINTS Lp1 AND Lp2 ARE CONSTRAINED ON THE CALIBRATION BOARD, WHERE d IS THE DISTANCE FROM

THE CAMERA TO THE BOARD. A): THE CAMERA FRAME C1 WITH THE BOARD CAN BE MOVED HORIZONTALLY AND VERTICALLY ALONG THE BOARD TO

C2 . B): THE CAMERA FRAME C1 WITH THE BOARD ARE FIRST ROTATED ALONG THE BOARD NORMAL Cn AND THEN ROTATED ALONG THE LASER LINE

DIRECTION Ll TO REACH C2 . (2): IN THE APPROACH OF LI ET AL. [8], ONLY TWO GEOMETRY CONSTRAINTS ARE OBTAINED. A): THE CAMERA FRAME

C1 WITH THE TRIANGULAR CALIBRATION BOARD ARE FIRST ROTATED LONG THE BOARD NORMAL Cn AND THEN ROTATED ALONG THE LASER LINE

DIRECTION Ll TO REACH C2 SUCH THAT Lp1 AND Lp2 ARE STILL ON THE BORDER LINES. B): THE LRF FRAME L1 CAN BE MOVED AND ROTATED TO

GET L2 AS LONG AS Lp1 AND Lp2 ARE ON GREEN 3D PERSPECTIVE PLANES OF 2D DETECTED BOARD EDGES. (3): IN METHODS [9] AND [10], THREE

GEOMETRY CONSTRAINTS ARE Cn⊤

i

(

C

L
R ·Lpi +

CtL
)

= 0 WHERE Cni WITH i= 1,2,3 ARE THREE NORMALS OF 3D PERSPECTIVE PLANES. TO

REACH L2 , THE LRF FRAME L1 WITH THE LASER LINE SEGMENTS CAN BE MOVED VERTICALLY ALONG THE CALIBRATION TARGET AND THEN ROTATED

AS LONG AS Lp1 , Lp2 AND Lp3 LIE ON THEIR GREEN 3D PERSPECTIVE PLANES. (4): IN APPROACHES [12] AND [11], GEOMETRY CONSTRAINTS (UP TO

TWO) ARE Cn⊤

i

(

C

L
R ·Lpi +

CtL
)

= 0 WHERE Cni WITH i= 1,2 ARE TWO NORMALS OF 3D PERSPECTIVE PLANES. BASE ON THE SAME PRINCIPLE,

THE LRF FRAME L1 , IN ORDER TO GET L2 , CAN BE MOVED VERTICALLY ALONG THE BOARD, ROTATED ALONG THE LASER LINE DIRECTION Ll, AND

ALSO ROTATED TOGETHER WITH THE LINE SEGMENT TO MAKE SURE Lp1 AND Lp2 STILL LIE ON CORRESPONDING PERSPECTIVE PLANES.

the solution may converge to a local minimum which may not

be the global minimum. However, this good initial estimate is

not guaranteed in existing methods. Based on different type of

calibration targets, previous methods can be classified into four

categories: planar board with a checkerboard, triangle board, V-

sharped target and rectangular board with a line or a band. Next,

we detail the spatial ambiguity in each category.

Planar Board with a Checkerboard: In the approach of

Zhang and Pless [5], all laser points must lie on the planar

calibration pattern, described as Cn⊤ (C
LR ·

Lpi +
CtL

)

= d in

Fig. 3. Essentially, only two laser points are constrained from

the single snapshot (two geometry constraints), and constraints

of the rest of the laser points are redundant since they all be-

long to the same line segment. For the relative pose of the 2D

LRF-camera pair, only two out of six degrees of freedom are

constrained. The remaining four degrees have ambiguity such

that there are infinite solutions for C
LR and CtL. As shown in

Fig. 3, the calibration board together with the camera frame can

be moved horizontally and vertically, and also can be rotated

along two different axes without violating the geometry con-

straints.

Triangle Board: The work of Li et al. [8] by using a trian-

gular board does not improve the constraints in the method by

Zhang and Pless [5]: two laser end points Lp1 and Lp2 must

lie on their corresponding border lines detected from the cam-

era, represented as Cn⊤
i

(

C
LR ·

Lpi +
CtL

)

= 0 where Cni with

i = 1,2 are the normals of the 3D perspective planes of 2D de-

tected border lines. These two constraints remove the ambiguity

of the horizontal translation and “triangular plane” removes the

ambiguity of the vertical translation for CtL. However, there are

still three degrees of freedom that remain ambiguous for C
LR

(See Fig. 3). Essentially, the drawback is that the constraints

are imposed on the 2D image: there exist uncertainties for a

total of four unknown elements from views of depth and ori-

entation (two linear geometry constraints plus three nonlinear

constraints for C
LR to solve nine unknowns). Additional details

are explained in Section IV.

V-sharped Target: The calibration target in [9] and [10] is

formed as V-shaped by two rectangular boards. Three laser end

points Lp1, Lp2 and Lp3 must lie on their corresponding board

edges detected from the camera. Although the geometry con-

straints increase to three, the same drawbacks of spatial ambi-

guities still exist (the vertical translation of the calibration target

as in [5], and the movement of laser points along their perspec-

tive planes as in [8]). See Fig. 3 for more details.

Rectangular Board with a Line or a Band: Methods in [11]

and [12] can be generalized as using a rectangular board with

a black band (or a line) in the middle. Two laser end points
Lp1 and Lp2 must lie on their band edges detected from the

camera. With no more than two geometric constraints, they also

suffer from spatial ambiguities. Thus, CLR and CtL have infinite

solutions (See Fig. 3).
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In contrast to previous methods, our method builds sufficient

constraints, which guarantee the uniqueness of the solution for

each input observation. In theory, we can use only one snap-

shot to calibrate the 2D LRF-camera rig. In practice, an accu-

rate result can be achieved with only a few snapshots (previous

methods require 20 or more).

III. GEOMETRY CONSTRAINTS FORMULATION

Our calibration setup is shown in Fig. 2. A V-shaped calibra-

tion target is formed by two triangular boards with a checker-

board on each triangle. The angle between the two boards can

be arbitrary as long as the two boards are not coplanar (the angle

is 0 or 180 degree). In practice, the angle is set to arbitrarily ob-

tuse to get good camera views of both two boards, and does not

need to be known. P , Q, R and O are four corners of the tar-

get. We define the triangles as T1 =△PQC and T2 =△PRC,

and let T3 =△PQO and T4 =△PRO. For each observation,

the scanning plane of the LRF intersects with the three sides

PQ, PR and PO at points Lp1, Lp2 and Lp3 respectively in

the LRF frame. Moreover, the camera and LRF should be ei-

ther synchronized or held stationary during data collection. The

camera is modeled by the standard pinhole model. We ignore

lens distortions in the rest of the paper, and assume that the im-

ages have already been undistorted, e.g. using the functions

from MATLAB Camera Calibration Toolbox [15].

Each observation of the calibration target consists of an im-

age acquired from the camera and a single scan obtained from

the LRF. The output of our calibration method is the relative

transformation (CLR and position CtL) between the 2D LRF and

the camera. As shown in Fig. 2, the input features from a sin-

gle observation are: 1) three laser points Lp1, Lp2 and Lp3

from the LRF; 2) two unit normals Cn1 and Cn2 of perspec-

tive planes T1, T2 from the camera; 3) two unit normals Cn3

and Cn4 of board planes T3 and T4 in the camera frame, and

two distances d1 and d2 from the camera to planes T3 and T4

respectively. Further details of feature extraction are described

in Section VI.

A single laser scan consists of a depth value for each angle at

which the depth was sensed. In the LRF frame, we assume that

the sensor is at its origin L. Let us express the feature points Lpi

as [xi,0, zi]
⊤, where i = {1,2,3} are the indices of the feature

points. Let the feature normals nj of planes Tj be [aj , bj , cj ]
⊤,

where j = {1,2,3,4}. We now have a correspondence between

a 3D point in LRF frame and a plane in camera frame. Thus,

our constraint is that the laser point, transformed to the cam-

era frame, must lie on the corresponding plane, which can be

divided into three parts.

First, laser points Lp1 and Lp2 must lie on the planes T1 and

T2, respectively. Then, the first two constraints have the form

Cn⊤
i

(

C
LR ·

Lpi +
CtL

)

= 0, i = {1, 2} (2)

where C
LR ∈ SO(3) and CtL are the unknowns. Second, for

laser points Lp1 and Lp3, they must both lie on the plane T3.

Then, we have other two constraints

Cn⊤
3

(

C
LR ·

Lpj +
CtL

)

= d1, j = {1, 3}. (3)

Similarly, laser points Lp2 and Lp3 must both lie on the plane

T4. This gives two more constraints:

Cn⊤
4

(

C
LR ·

Lpk + CtL
)

= d2, k = {2, 3}. (4)

As stated in Section II, once we solve for two columns r1 and

r3 of C
LR, the second column r2 can be obtained by

r2 = r3 × r1. (5)

To summarize, we have nine unknowns (in r1, r3 and CtL) and

a system of six linear (Eqs. (2)-(4)) and three nonlinear equa-

tions (Eq. (1)). In the next section, we show that these nine

constraints are independent and hence sufficient to obtain a so-

lution.

IV. UNIQUENESS OF THE SOLUTION

In this section, we prove that the features from a single obser-

vation of our calibration target constrain the calibration problem

to a finite number of solutions.

For a single observation of the calibration target, our method

builds up a system of Eqs. (1)-(4). In order to prove the pro-

posed method does not induce any ambiguity, the nine equations

must be independent. We show that the first six linear equations

are linearly independent. Since the other three nonlinear equa-

tions have no relationship with geometry constraints, they are

independent from the first six linear equations.

From the constraints formulation, the six linear equations can

be expressed as the following form

AX = B, X = [CtL
⊤, r⊤1 , r

⊤
3 ]

⊤, (6)

where X is the vector of unknowns with CtL = [t1, t2, t3]
⊤,

r1 = [r11, r21, r31]
⊤ and r3 = [r13, r23, r33]

⊤, B is the distance

vector denoted as B = [0,0, d1, d1, d2, d2]
⊤, and A is the coef-

ficient matrix whose elements are expressed using components

from Cni and Lpj as defined in Section III. Lemma 1 below

states that the three unit vectors Cn1, Cn2 and Cn3 are linearly

independent, which means they span the entire 3D space.

Lemma 1: Suppose Cni is the normal vector of plane Ti for

i= 1,2,3,4 as defined in Fig. 2, these normal vectors in any car-

dinality three subset of {Cn1,
Cn2,

Cn3,
Cn4} are linearly in-

dependent (totally four subsets: I. Cn1, Cn2 and Cn3; II. Cn1,
Cn2 and Cn4; III. Cn1, Cn3 and Cn4; IV. Cn2, Cn3 and Cn4.).

The proof is presented in Appendix A.

As a corollary, the unit vector Cn4 can be expressed as the

combination of first three unit vectors Cn4 = u ·C n1 + v ·C

n2 +w ·C n3. This allows us to perform Gaussian elimination

on Eq. (6) as follows:

• Keep row1 and row2 unchanged, and let Row3← row4;

• Let Row4← row3− row4 and Row5← row6− row5;

• Let Row6← row5− (u · row1 + v · row2 +w · row3).

Here, A is transformed as

A =

















a1 b1 c1 a1x1 b1x1 c1x1 a1z1 b1z1 c1z1
a2 b2 c2 a2x2 b2x2 c2x2 a2z2 b2z2 c2z2
a3 b3 c3 a3x1 b3x1 c3x1 a3z1 b3z1 c3z1
a3 b3 c3 a3x3 b3x3 c3x3 a3z3 b3z3 c3z3
a4 b4 c4 a4x2 b4x2 c4x2 a4z2 b4z2 c4z2
a4 b4 c4 a4x3 b4x3 c4x3 a4z3 b4z3 c4z3

















→ Ā =
[

Pα Qα

03×3 P̄β |Q̄β

]

(7)
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with sub-matrices Pα, P̄β , Qα and Q̄β where

Pα =





a1 b1 c1
a2 b2 c2
a3 b3 c3





P̄β =





a3 b3 c3
a4 b4 c4
a13 b13 c13





,

Qα =





a1x1 b1x1 c1x1 a1z1 b1z1 c1z1
a2x2 b2x2 c2x2 a2z2 b2z2 c2z2
a3x3 b3x3 c3x3 a3z3 b3z3 c3z3





Q̄β =





a3kγ b3kγ c3kγ
a4kβ b4kβ c4kβ
a13kα b13kα c13kα





(8)

with kα =
z1− z2

x1−x2
, kβ =

z2− z3

x2−x3
, kγ =

z3− z1

x3−x1
and a13 =

ua1 +wa3, b13 = ub1 +wb3, c13 = uc1 +wc3. We perform

one more step of Gaussian elimination:

• Let Row6← Row6−w ·Row4.

The matrix Ā is transformed as

Ā → Ã =
[

Pα Qα

03×3 Pβ |Qβ

]

(9)

with sub-matrices Pβ and Qβ where

Pβ =





a3 b3 c3
a4 b4 c4
a1 b1 c1



,Qβ =





a3kγ b3kγ c3kγ
a4kβ b4kβ c4kβ

a1kα + a3kδ b1kα + b3kδ c1kα + c3kδ



 (10)

with kδ =
[w

u
· a3(kα− kγ)

]

. Since laser features Lp1, Lp2

and Lp3 are extracted from two distinct line segments, their

XL coordinates cannot be equal otherwise these three points

are on a same plane from an invalid observation. Therefore, kα,

kβ and kγ can be calculated. After Gaussian elimination, the

distance vector B is transformed into a new vector denoted as

B̃ = [0,0,d1,0,0, d̃]
⊤, where d̃= d2−wd1

u(x2−x1)
.

Let us first take a close look at the structure of Ã. Since we

know that unit vectors Cn1, Cn2 and Cn3 are linearly indepen-

dent (Lemma 1), matrix Pα is non-singular such that we can

reduce it to an upper triangular matrix. Thus, the first three lin-

ear equations are independent. Next, the unit vectors Cn1, Cn3

and Cn4 are also linearly independent (Lemma 1). Then, ma-

trix Pβ is also non-singular and can be reduced into an upper

triangular matrix, which means the last three linear equations

are also independent. From the procedure above, we have just

reduced the Ã to a matrix which has a lower triangular corner

with zero elements, just shown as follows

Ã →

[

▽3×3 �3×3 �3×3

03×3 ▽3×3 �3×3

]

, (11)

where ▽ represents a 3× 3 upper triangular matrix and � rep-

resents a 3× 3 square matrix. From the matrix structure in

Eq. (11), we can conclude that the six linear equations for geom-

etry constraints are linearly independent, which means plus the

other three nonlinear equations we can solve for nine unknown

components in r1, r3 and CtL, respectively. Hence, there is no

ambiguity in our proposed method in which the relative pose

between the LRF and the camera is determined from a single

snapshot of the calibration target. �

V. ANALYTICAL SOLUTION

In this section, we first present how to obtain the solution for

the extrinsic calibration of the LRF-camera system from just

a single observation of the calibration target. Then, we show

the solution from multiple observations which is needed to re-

duce the effect of noise. Note that an analytical solution is ob-

tained in our constraints system, which is more general than the

closed-form solution in [11]. Moreover, we present a strategy

to exclude invalid solutions from the cheirality check.

A. From a Single Observation

We outline seven steps to solve the polynomial system

(Eqs. (1)-(4)). For convenience, the geometry constraints

(Eqs. (2)-(4)) are reformulated as follows

C n̄⊤
i

(

C
LR ·

Lp̄i +
CtL

)

= d̄i, i = 1, 2, ..., 6 (12)

where the parameters C n̄i,
Lp̄i and d̄i are defined as











C n̄i =
Cni, i= 1,2

C n̄j =
Cn3, j = 3,4

C n̄k = Cn4, k = 5,6

,











Lp̄i =
Lp1, i= 1,3

Lp̄j =
Lp2, j = 2,5

Lp̄k = Lp3, k = 4,6

,











d̄i = 0, i= 1,2

d̄j = d1, j = 3,4

d̄k = d2, k = 5,6

. (13)

STEP 1: The problem is reformulated in the view of nonlinear

optimization as stated in [12] shown below

argmin
C

L
R,CtL

J =

N
∑

i=1

(

C n̄⊤
i

(

C
LR ·

Lp̄i +
CtL

)

− d̄i
)2

s. t. C
LR

⊤ ·CLR= I, det
(

C
LR
)

= 1

, (14)

where N = 6. From the reformulated problem (14), the optimal

solution for CtL is obtained as shown below

∂J

∂CtL
=

N
∑

i=1

2
[

C n̄⊤
i

(

C
LR ·

Lp̄i +
CtL

)

− d̄i
]

C n̄i = 0

⇒ CtL =N−1
o

(

Dn−
N
∑

i=1

C n̄i
C n̄⊤

i
C
LR

Lp̄i

)

,

(15)

where No =
∑N

i=1
C n̄i

C n̄⊤
i and Dn =

∑N
i=1 d̄i

C n̄i.

Lemma 2: No is a non-singular matrix and thus invertible.

Lemma 2 is proved in Appendix B.

Since a laser point is defined as Lp̄i = [x̄i,0, z̄i]
⊤, we arrange

the expression of CtL in (15) to the form

CtL = N−1
o (Dn −Nαr1 −Nγr3) , (16)

in which Nα =
∑N

i=1
C n̄i

C n̄⊤
i x̄i and Nγ =

∑N
i=1

C n̄i
C n̄⊤

i z̄i.

STEP 2: With Nx, Nz , N and D defined as

Nx =







x̄1
C n̄⊤

1
...

x̄N
C n̄⊤

N






, Nz =







z̄1
C n̄⊤

1
...

z̄N
C n̄⊤

N






, N =







C n̄⊤
1

...
C n̄⊤

N






, D =







d̄1
...

d̄N






, (17)

we substitute (16) in constraints (12) and obtain

Gxr1 + Gzr3 = Gd, (18)

where Gx =Nx−NN
−1
o Nα, Gz =Nz −NN

−1
o Nγ and Gd =

D−NN−1
o Dn. Then, r1 is further expressed in terms of r3

r1 = Hr3 +K, (19)

whereH=−
(

G⊤x Gx
)−1
G⊤x Gz and K =

(

G⊤x Gx
)−1
G⊤x Gd.



6

Note that G⊤x Gx is invertible. The proof is by contradic-

tion. We first assume the 3× 3 matrix G⊤x Gx is non-invertible

thus rank deficient. From (18), we have
(

G⊤x Gx
)

r1 = G
⊤
x Gd−

G⊤x Gzr3, which is a Ax = b system for solving r1. Then for

any given r3 (thus b is given), the rank-deficient A results in

infinite solutions for x (which is r1). It means that our system

has ambiguity, which is in contradiction to the uniqueness proof

in Section IV. Hence, G⊤x Gx is invertible. �

STEP 3: Now we can eliminate r1 by substituting (19) in the

three remaining second order constraints (1). After full expan-

sion, we have the following

e11r
2
13 + e12r13r23 + e13r

2
23 + e14r13r33 + e15r23r33 + e16r

2
33 + e17r13 + e18r23 + e19r33 +m= 0 (20)

e21r
2
13 + e22r13r23 + e23r

2
23 + e24r13r33 + e25r23r33 + e26r

2
33 + e27r13 + e28r23 + e29r33 = 0 (21)

r213 + r223 + r233− 1 = 0, (22)

where the coefficients eij and the constant m are computed in a

closed form in terms of the components of H and K. To solve

the polynomial system (Eqs. (20)-(22)), we aim to obtain a uni-

variate polynomial in r33 using Macaulay resultant [16]. This

multivariate resultant is the ratio of two determinants, the de-

nominator (23) and numerator (24)





e11 0 0
0 e11 1

E16 e13 1



 , E16 = e16r
2
33 + e19r33 +m (23)



















































e11 0 0 0 0 0 0 0 0 0 0 0 0 0 0
e12 e11 0 0 0 0 1 0 e21 0 0 0 0 0 0
E14 0 e11 0 0 0 0 1 0 e21 0 0 0 0 0
e13 e12 0 e11 0 0 0 0 e22 0 1 0 0 0 0
E15 E14 e12 0 e11 0 0 0 E24 e22 0 1 0 e21 0
E16 0 E14 0 0 e11 0 0 0 E24 0 0 1 0 e21
0 e13 0 e12 0 0 1 0 e23 0 0 0 0 0 0
0 E15 e13 E14 e12 0 0 1 E25 e23 0 0 0 e22 0
0 E16 E15 0 E14 e12 E31 0 E26 E25 0 0 0 E24 e22
0 0 E16 0 0 E14 0 E31 0 E26 0 0 0 0 E24

0 0 0 e13 0 0 0 0 0 0 1 0 0 0 0
0 0 0 E15 e13 0 0 0 0 0 0 1 0 e23 0
0 0 0 E16 E15 e13 0 0 0 0 E31 0 1 E25 e23
0 0 0 0 E16 E15 0 0 0 0 0 E31 0 E26 E25

0 0 0 0 0 E16 0 0 0 0 0 0 E31 0 E26



















































, (24)

with elements E14, E15, E31, E24, E25 and E26 defined as

E14 = e14r33 + e17, E15 = e15r33 + e18, E31 = r233− 1

E24 = e24r33 + e27, E25 = e25r33 + e28, E26 = e26r
2
33 + e29r33

. (25)

We set this resultant to 0, and obtain the univariate polynomial

equation

g1r
8
33 + g2r

7
33 + g3r

6
33 + g4r

5
33 + g5r

4
33 + g6r

3
33 + g7r

2
33 + g8r33 + g9 = 0, (26)

where the coefficients gi are computed in closed-form of the

coefficients of Eqs. (20)-(22).

Although the eighth-degree (higher than four) univariate

polynomial P does not have a closed-form roots expression, we

can obtain its all roots by computing the eigenvalues of its com-

panion matrix C(P) [17]. For numerical stability, we approx-

imate the roots through an iterated method [18] which uses a

generalized companion matrix C(P,S) constructed from P and

initialized by C(P). Here, C(P) and C(P,S) are expressed as

C(P) =











0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

− g9
g1
− g8

g1
− g7

g1
· · · − g2

g1











, C(P,S) =











s1 0 · · · 0
0 s2 · · · 0
...

...
. . .

...

0 0 · · · s8











−











l1 l2 · · · l8
l1 l2 · · · l8
...

...
...

...

l1 l2 · · · l8











, (27)

where S = (s1, ..., s8), li = |
P(si)
Q′(si)

| and Q′(si) =
∏

i 6=j(si −

sj). S is first initialized as the eigenvalues of C(P). Then for

each iteration, S is updated as the eigenvalues of C(P,S) until

S is converged. Eight possible solutions for r33 are obtained.

STEP 4: Each solution for r33 (numeric value ˆr33) corresponds

to a single solution for the rest of the unknowns. For numerical

stability, we compute the Sylvester resultant [16] of Eq. (20)

and Eq. (22) w.r.t. r23. With the determinant of this resultant

set to zero, we obtain a quartic polynomial P1 in r13

P1 = det

















f12 e12r13 + e15 ˆr33 + e18 e13 0
0 f12 e12r13 + e15 ˆr33 + e18 e13

r213 + ˆr33
2− 1 0 1 0

0 r213 + ˆr33
2− 1 0 1

















= 0, (28)

where f12 = e11r
2
13+ e14r13 ˆr33+ e16 ˆr33

2+ e17r13+ e19 ˆr33+
m. Similarly, we compute the Sylvester resultant of Eq. (21)

and Eq. (22) w.r.t. r23, and set its determinant to zero to obtain

another quartic polynomial P2 in r13. To solve this overdeter-

mined system, we aim to minimize the sum of the squares of

P1 and P2, and thus set the derivative of P2
1 + P2

2 w.r.t. r13
to zero to get a seventh-degree polynomial. Seven solutions for

r13 obtained by iterated method mentioned above are tested if

both P1( ˆr13) = 0 and P2( ˆr13) = 0.

After substituting the numeric solutions ˆr13 and ˆr33 into

Eqs. (20)-(22), we perform the same optimization method to

solve the overdetermined system for r23. Note that we have

a closed-form roots expression for the third-degree polynomial

obtained from the derivative of the cost function w.r.t. r23 (the

sum of the squares of three polynomials in (20)-(22)). We only

keep the solution ˆr23 if all Eqs. (20)-(22) hold.

STEP 5: After obtaining r3, r1 can be calculated from Eq. (19)

and r2 can be retrieved from Eq. (5). Finally, CtL can be ob-

tained using Eq. (15).

Eight possible solutions give us up to four real solutions. Four

complex solutions can be eliminated as follows. We square all

the elements of r1, r2, r3 and CtL, and check if they all have

non-negative real parts.

STEP 6: In practice, while the solution for r3 fails to deliver a

real solution in the presence of noise, we use its projection on

real domain as the initial value. Eqs. (20)-(22) are then treated

as a whole F(x) = 0 for r3, which can be solved using the

Trust-Region Dogleg method [19] [20]. At each iteration k, the

trust region subproblem here is

argmin
dk

1

2
F(xk)

⊤F(xk)+d⊤
k J (xk)

⊤F(xk)+
1

2
dkJ (xk)

⊤J (xk)dk

s. t. ‖dk‖ ≤∆k

, (29)

where ∆k is updated, and the Jacobian is defined as J (xk) =

[∇F1(xk),∇F2(xk),∇F3(xk)]
⊤

. The step dk to obtain xk+1

is then constructed as

dk =

{

λdC , 0≤ λ≤ 1

dC +(λ− 1)(dGN −dC), 1≤ λ≤ 2
, (30)

where λ is the largest value such that ‖dk‖ ≤ ∆k. With

gk = J (xk)
⊤F(xk) and Bk = J (xk)

⊤J (xk), the Cauchy

step and the Gauss-Newton step are respectively defined as

dC =− g⊤

k
gk

g⊤

k
Bkgk

gk and dGN =−B−1
k gk.
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Fig. 4

FOUR POSSIBLE REAL SOLUTIONS ARE SHOWN AS A COMBINATION OF

THE LRF FRAME AND THE CAMERA FRAME ({L1,C1}, {L2,C1},

{L3,C2} AND {L4,C2}). THE UNIQUE SOLUTION {L1,C1} IS

DETERMINED THROUGH THE CHEIRALITY CHECK.

STEP 7: We must choose the unique solution from invalid so-

lutions through the cheirality check. Fig. 4 shows four possi-

ble real solutions, which are {L1,C1}, {L2,C1}, {L3,C2} and

{L4,C2} in terms of a combination of the LRF frame and the

camera frame.

The unique solution {L1,C1} is determined as follows. Both

the LRF and the camera must face towards the same direction,

and three laser points Lp1, Lp2 and Lp3 after transformation

to the camera frame must be in front of the camera. These two

conditions are

n⊤
z ·

C1

L1
R ·nz > 0, nz = [0,0,1]⊤

n⊤
z ·
(

C1

L1
R · L1pi +

C1tL1

)

> 0, i= {1,2,3}
. (31)

B. From Multiple Observations

Multiple observations from different views can be used to

suppress noise. The problem in this case is formulated as fol-

lows

argmin
C

L
R,CtL

M
∑

i=1

N
∑

j=1

(

C n̄⊤
ij

(

C
LR ·

Lp̄ij +
CtL

)

− d̄ij
)2

s. t. C
LR

⊤ ·CLR= I, det
(

C
LR
)

= 1

, (32)

where N = 6 and M is the total number of different multiple

observations. The solution is obtained through the seven steps

mentioned in Subsection A. As the rotation is represented by the

Rodrigues’ formula, the calibration result is further refined us-

ing Levenberg-Marquardt (LM) method [21] [22]. Our solution

in (32) serves as the accurate initial value.

VI. DETAILS OF THE CALIBRATION APPROACH

We explain below how to accurately extract the features re-

quired for our method. These are four normal vectors Cni

Fig. 5

A CALIBRATION TARGET BUILT IN A CONVEX V-SHAPE IS PUT ON THE

TABLE. ACCURATE DATA EXTRACTION FROM BOTH THE LRF AND THE

CAMERA IS PERFORMED BY LINE INTERSECTION AND OPTIMIZED LINE

DETECTION.

Fig. 6

THE HISTOGRAM OF COMPUTATIONAL ERRORS FOR COMPUTED ROTATION

AND TRANSLATION IN 104 RANDOM AND NOISE-FREE MONTE-CARLO

TRIALS.

(i = 1,2,3,4) and two distances dj (j = 1,2) from the camera,

and three laser edge points Lpk (k = 1,2,3) from the LRF.

A. Data from the LRF

Our calibration can be built in a convex shape as shown in

Fig. 5. We can put the calibration target on a planar object

(such as table, wall and the ground) such that Lp1, Lp2 and
Lp3 are accurately determined by the intersection between line

segments. Specifically, the laser intersection with the objects

are first segmented into four parts Ll1, Ll13, Ll23, and Ll2
(e.g. using the Ramer-Douglas-Peucker algorithm (RDP) al-

gorithm [23]). We then fit a line to each segment using the

total least squares method [24]. Lp1 is thus obtained by the

intersection of lines Ll1 and Ll13. Similarly, Lp2 and Lp3 are

respectively determined by the other two pairs {Ll2,
Ll23} and

{Ll13,
Ll23}.

B. Data from the Camera

Using our calibration target with two checkerboards, the cam-

era calibration is first performed by the MATLAB Toolbox [15].

Two normal vectors Cn3 and Cn4 of planes T3 and T4 can be

obtained directly from the calibration toolbox. Each checker-

board is on the plane zT = 0 in its own world frame. For ex-

ample, we have the rotation C
T3
R and translation CtT3

from the
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calibration result, which represent the orientation and position

of the plane T3 w.r.t. the camera. Cn3 is just minus the 3rd

column of C
T3
R, and the distance d1 from the camera to T3 is

d1 =
Cn⊤

3 ·
C tT3

. Similarly, Cn4 and d2 can be also calculated.

From the image (See Fig. 5), the unit line directions of PQ,

PR and PO are projected as v1, v2 and as v3, and the projec-

tion point of the vertex P is pP . As stated in [13], we perform

a weighted optimization initialized by the LSD [25] line detec-

tor to accurately estimate the set {pP ,v1,v2,v3}. Specifically,

only the pixels within a rectangular region Si are considered for

fitting vi. Let ηi be the normal of vi. Hence, the optimization

problem is expressed as

argmin
pP ,v1,v2,v3

3
∑

i=1

Ni
∑

j=1

G
j
i · ((p

j
i − pP ) · ηi)

2, (33)

where each region Si has the number Ni of valid pixels p
j
i

whose gradient magnitudes G
j
i as their weights are above a

threshold. Given the intrinsic matrix K, the normal vector Cni

(i= 1,2) is obtained by Cni =
K−1vi

‖K−1vi‖ .

C. Snapshot Selection

The solution from a single snapshot constrains three laser

points Lpk (k = 1,2,3). In the presence of noise, it should also

guarantee that laser points Lpi
13 from the line Ll13 and Lp

j
23

from Ll23 must respectively lie on T3 and T4. We determine

a snapshot as ill-conditioned if the average squared distance of

laser points to their corresponding planes is larger than a thresh-

old ǫ2. From multiple observations, it can guide us to select

well-conditioned snapshots for further accuracy. Given the so-

lution C
LR̂ and C t̂L, we will keep this snapshot if it satisfies

N13
∑

i=1

(Cn⊤
3 (

C
LR̂ ·

Lpi
13 +

C t̂L)− d1)
2

2N13
+

N23
∑

j=1

(Cn⊤
4 (

C
LR̂ ·

Lp
j
23 +

C t̂L)− d2)
2

2N23
≤ ǫ2, (34)

where Ll13 and Ll23 are treated equally, and have N13 and N23

points, respectively. The average squared distance of each line

is first calculated and then half weighted as the left two terms of

summation in Eq. (34).

VII. SYNTHETIC EXPERIMENTS

For the simulation setting, the obtuse angle between two tri-

angle boards of the calibration target is set to 150◦. Then, we

uniformly and randomly generate roll, pitch and yaw in the

range of ±45◦ for the orientation of the LRF w.r.t. the cam-

era, and three components of the position from 5 to 30 cm. For

each instance of the ground truth, we randomly generate the ori-

entation and position of the calibration target within the range

of ±45◦ and 50 to 150 cm. In the extreme case, the position

angle between the LRF-to-target direction and the camera-to-

target direction is more than 33◦. It includes the scenario in

proportion that the camera-to-LRF distance is large, as long as

the target is visible from two sensors.

A. Numerical Stability

We performed 104 Monte-Carlo trials to validate the numeri-

cal stability of our solution in the noise-free case. For each trial,

only one snapshot of the calibration target is needed. The er-

ror metric e= ‖[Rgt|tgt]− [R̂|t̂]‖F is the Frobenius norm (F)

of the difference between the ground truth (gt) and our solu-

tion. The histogram of errors is shown in Fig. 6. The computa-

tional error varies but the accuracy is still high (around 10−8). It

demonstrates that our method correctly solves the LRF-camera

calibration problem, which further validates the sufficiency of

the constraints from a single snapshot.

B. Sensitivity to Data Noise

This simulation tests the sensitivity of our solution to the

noise in feature data. Two sources of error are taken into ac-

count: the laser depth uncertainty along the beam direction and

the pixel uncertainty in line detection. Based on the practical

setting, we respectively set the standard deviations (STDs) of

laser noise and pixel error as σ1 = 10 mm and σ2 = 3 px in

the 640× 480 image. A factor kσ varies from 0 to 1 to com-

bine the noise information as kσσi (i = 1, 2) [13] from both

sensors in one plot. 1000 Monte-Carlo trials are performed,

each of which needs only one snapshot. The metrics for angular

error (the chordal distance [26] of rotation) and distance error

(translation) are respectively eθ = 2arcsin( 1
2
√
2
‖R̂−Rgt‖F )

and ed = ‖t̂− tgt‖2. Fig. 7 demonstrates that as the noise level

increases, our solution is robust to the image noise but has a

greater sensitivity to the laser depth noise.

C. Sensitivity to Angle between Boards

The sensitivity of our solution to the angle between two trian-

gle boards of the calibration target is tested. We set σ1 = 10 mm

and σ2 = 3 px. The angle varies from 30◦ to 170◦. Fig. 8 shows

the means and STDs for both angular and distance error. Our

solution is not sensitive to the angle between boards but still has

the smallest errors around 135◦.

D. Noise Reduction

We report a simulation designed for testing the noise reduc-

tion of our solution when using multiple observations. Here, σ1

varies from 1 mm to 10 mm with σ2 set to 3 px. At each noise

level, the means and STDs are calculated for both eθ and ed
from 1000 Monte-Carlo trials. From Fig. 9, we observe that as

number of observations increases, the means and STDs of both

errors asymptotically decrease. Moreover, with a small number

of snapshots, our solution can achieve a highly accurate initial

value for further optimization. Specifically, eθ and ed are re-

spectively around 0.5◦ and 5 mm for only 5 snapshots.

E. Snapshot Selection

With snapshot selection, additional accuracy is achieved (See

Fig. 10) in the presence of noise σ1 = 10 mm and σ2 = 3 px.

The distance threshold ǫ is set to 5 mm. The errors eθ and ed
are further decreased by nearly 50% compared with the solution

without any single-snapshot check. Specifically, eθ and ed are

respectively around 0.25◦ and 2 mm for only 5 snapshots. Thus,

our method can guarantee a high accuracy of the solution when

using multiple snapshots.
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Fig. 7

ERRORS IN ESTIMATED ROTATION AND TRANSLATION AS A FUNCTION OF

THE LASER NOISE WITH DIFFERENT LEVELS OF THE PIXEL NOISE. EACH

POINT REPRESENTS THE MEDIAN ERROR FOR 1000 MONTE-CARLO

TRIALS. EACH LINE CORRESPONDS TO A DIFFERENT LEVEL OF THE PIXEL

NOISE VERSUS THE LASER NOISE CHANGED BY THEIR OWN STDS.
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Fig. 8

MEANS AND STDS OF THE ERRORS FOR ESTIMATED ROTATION AND

TRANSLATION VERSUS THE ANGLE BETWEEN TWO TRIANGLE BOARDS OF

THE CALIBRATION TARGET. EACH POINT REPRESENTS THE MEAN ERROR

WITH ITS STD FROM 1000 MONTE-CARLO TRIALS. THE ERRORS GENTLY

VARY AS LONG AS THE ANGLE BETWEEN BOARDS IS OBTUSE.
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Fig. 9

MEANS AND STDS OF THE ERRORS FOR ESTIMATED ROTATION AND

TRANSLATION VERSUS THE NUMBER OF OBSERVATIONS OF THE

CALIBRATION TARGET IN 1000 MONTE-CARLO TRIALS WITH THE LASER

NOISE CHANGED BY ITS STD.
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THE COMPARISION OF MEANS AND STDS OF THE ERRORS FOR

ESTIMATED ROTATION AND TRANSLATION BETWEEN

SINGLE-VIEW-CHECK AND WITHOUT-ANY-CHECK VERSUS THE NUMBER

OF OBSERVATIONS OF THE CALIBRATION TARGET IN 1000

MONTE-CARLO TRIALS.

VIII. REAL EXPERIMENTS

To further validate our method, we perform real experiments

in comparison with other two existing methods [5] and [10].

A LRF Hokuyo URG-04LX is rigidly mounted on a stereo

rig which consists of a pair of Point Grey Chameleon CMLN-

13S2C cameras (See Fig. 1). Sensors are synchronized based

on time stamps. The LRF is set to 180◦ horizontal field of

view, with an angular resolution of 0.36◦ and a line scanning

frequency of 10 Hz. Its scanning accuracy is ±1 cm within a

range from 2 cm to 100 cm, and has 1% error for a range from

100 cm to 400 cm. The cameras have a resolution of 640× 480

pixels, and are pre-calibrated based on [28]. The images prior to

data processing are warped to get rid off the radial and tangent

distortions.

A. Comparison with Existing Methods

We compare our method to two state-of-the-art algorithms [5]

and [10] using the ground truth of the stereo-rig baseline.

Specifically, let T = [ R t
000 1 ] represent the transformation (rota-

tion and translation) between two frames. For each method, the

LRF is first calibrated w.r.t both left and right cameras to obtain
Cl

L T and Cr

L T. We then compute the relative pose (baseline) be-
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Fig. 11

COMPARISONS WITH THE METHOD OF ZHANG AND PLESS [5] AND THE METHOD OF KWAK ET AL. [10]. 1ST AND 2ND: MEANS OF ESTIMATED

ROTATION AND TRANSLATION ERRORS FOR ALL THREE METHODS AS THE NUMBER OF OBSERVATIONS OF THE CALIBRATION TARGET INCREASES; 3RD

AND 4TH: STDS OF ESTIMATED ROTATION AND TRANSLATION ERRORS FOR ALL THREE METHODS AS THE NUMBER OF OBSERVATIONS INCREASES.

tween stereo cameras and compare it with the the ground truth
Cr

Cl
T calibrated from the toolbox [15]. Hence, the error matrix

is Te =
Cr

Cl
T ·Cl

L T · (Cr

L T)−1, where Re and ‖te‖2 are respec-

tively compared with the identity and zero.

The stereo cameras are calibrated for 10 times where each

time 20 image pairs are randomly chosen from 40 pairs. With

the rotation represented by the Rodrigues’ formula, the means

of the rotation angle and the baseline distance are respec-

tively 0.0137◦ and 96.0511 mm (the translation is [−96.0505,

−0.3035, −0.1326]⊤ in mm). Because of their low STDs

0.0018◦ and 0.2742 mm (within 0.01◦ and 1 mm), we treat their

means as the ground truth. The distances between the LRF and

the stereo cameras are approximately 100 mm and 150 mm. 30

best observations of each method are obtained using a RANSAC

framework (5 snapshots are randomly chosen from a total 50).

We randomly select subsets of 1, 5, 10, 15 and 20 observations

to perform the calibration between the LRF and the stereo rig.

The calibration is performed 10 times for each random subset.

Fig. 11 shows that our method has the smallest errors of

both rotation and translation as the number of observations in-

creases. Specifically, the mean errors from 20 observations are

respectively 0.3◦ and 3.4 mm almost three times lower than the

method of Zhang and Pless (1.3◦ and 12.0 mm) and the method

of Kwak et al. (1.0◦ and 12.6 mm). Moreover, our method can

obtain a reasonable result even using only one snapshot, which

is not possible for the other two methods. In other words, our

method can achieve an accuracy at the same level but using the

smallest number of observations.

B. Real Scene Validation

This experiment from the real scene tests the calibration re-

sults between LRF to both left and right cameras, respectively,

obtained by two existing methods [5] [10] and our method for

comparison (See Fig. 12). We generate a dataset of 30 input

observations for each method using their own calibration tar-

gets. The calibration results are obtained from 20 observations

randomly chosen from 30 in total of each method. We then

respectively test them using the stereo images from new obser-

vations of our calibration target which are not involved in the

calibration process. From the comparison, we observe that the

laser scanning lines for our method more reasonably match the

Fig. 12

THE PROJECTION OF LASER POINTS SCANNED ON THE CALIBRATION

TARGET ONTO THE IMAGES FROM BOTH LEFT AND RIGHT CAMERAS USING

THREE DIFFERENT METHODS. CYAN BOXES SHOW THE CLOSE-UP OF

LASER POINT PROJECTION. METHODS [5] AND [10] ARE GREEN AND

YELLOW COLORED, RESPECTIVELY. OUR APPROACH IS RED COLORED.

calibration target (board boundaries) from both left and right

cameras. Thus, it validates the correctness of our calibration

results of each LRF-camera pair.

IX. CONCLUSION

In this paper, we presented a novel method for calibrating

the extrinsic parameters of a system of a camera and a 2D laser

rangefinder. In contrast to existing methods, our coplanarity

constraints for feature data suffice to unambiguously determine

the relative pose between these two sensors even from a single

observation. A series of experiments verified that the number of

observations can be drastically reduced for an accurate result.

Our solution technique was also extended to the case of multi-

ple observations to reduce noise for further refinement. We are

working on releasing our code [29].



DONG AND ISLER: A NOVEL METHOD FOR EXTRINSIC CALIBRATION OF A 2D LRF AND A CAMERA 11

APPENDICES

A. PROOF OF LEMMA 1

From Fig. 2, Cni is the normal vector of plane Ti for i =
1,2,3,4 and we claim that these normal vectors in any cardinal-

ity three subset of {Cn1,
Cn2,

Cn3,
Cn4} are linearly indepen-

dent. It is obvious that there are totally four subsets: I. Cn1,
Cn2 and Cn3; II. Cn1, Cn2 and Cn4; III. Cn1, Cn3 and Cn4;

IV. Cn2, Cn3 and Cn4. We will prove separately for each sub-

set and show that subsets I and II are symmetric arguments, and

subsets III and IV are also symmetric arguments.

According to the geometry setting in Fig. 2, we notice that for

each subset three different planes have a common intersection

point P , which means there is no parallelism between them. We

let l12, l13, l23 and l34 respectively denote the directional unit

vectors of the lines PC, PQ, PR and PO w.r.t. the camera

frame.

So let us first prove the claim for subset I: Cn1, Cn2 and
Cn3. We assume that these three normal vectors are linearly

dependent, which means there exists three nonzero coefficients

α, β and γ such that αCn1 + βCn2 + γCn3 = 0, otherwise

two of three planes would have parallelism (e.g. α = 0 such

that βCn2 = −γCn3) or one plane of them reduces to nonex-

istence (e.g. α = β = 0 such that γCn3 = 0). Thus, Cn3 can

be represented as the combination of Cn1 and Cn2. Since the

intersecting line of T1 and T2 is PC, we have the following

{

l⊤12 ·
Cn1 = 0

l⊤12 ·
Cn2 = 0

⇒ l⊤12 ·
Cn3 = 0. (35)

It means that the line PC is on the plane T3 given the fact that

they share a common point P . It is a contradiction unless cam-

era center C is also on the plane T3, which is a useless case

since camera cannot capture the checkerboard on T3. Thus, the

normal vectors Cn1, Cn2 and Cn3 are linearly independent. It

is similar for subset II that we would have a contradiction that

the line PC is on the plane T4 based on l⊤12 ·
Cn4 = 0 if Cn1,

Cn2 and Cn4 are linear dependent. So we can conclude that

these vectors in both subset I and II are linearly independent.

Next let us focus on the claim for subset III: Cn1, Cn3 and
Cn4. We assume that these three normal vectors are linearly

dependent, which means there exists three nonzero coefficients

α, β and γ as explained in subset I such that αCn1 + βCn3 +
γCn4 = 0. Thus, Cn1 can be represented as the combination of
Cn3 and Cn4. Since the intersecting line of T3 and T4 is PO,

we have the following

{

l⊤34 ·
Cn3 = 0

l⊤34 ·
Cn4 = 0

⇒ l⊤34 ·
Cn1 = 0. (36)

It means that the line PO is on the plane T1 given the fact that

they share a common point P . It is a contradiction unless the

corner O of the calibration target is also on the plane T1, which

is a useless case since camera cannot capture the checkerboard

on T3. Thus, the normal vectors Cn1, Cn3 and Cn4 are linearly

independent. It is similar for subset IV that we would have a

contradiction that the line PO is on the plane T2 based on l⊤34 ·
Cn2 = 0 if Cn2, Cn3 and Cn4 are linear dependent. So we can

conclude that these vectors in both subset III and IV are also

linearly independent.

Above all, it is proved that three normal vectors in each subset

from I, II, III and IV are linearly independent. �

B. PROOF OF LEMMA 2

From Appendix A, we know that any three of normal vectors
Cn1, Cn2, Cn3 and Cn4 can span the whole 3D space. Based

on the definitions in (13), the matrix in (15) is

No =
∑N

i=1
C n̄i

C n̄⊤
i = Cn1

Cn⊤
1 +Cn2

Cn⊤
2 +2Cn3

Cn⊤
3 +2Cn4

Cn⊤
4 , (37)

which is a symmetric matrix. We now show that this matrix is

non-singular.

As is known, the eigenvalues of a positive definite matrix are

all positive [30]. Further, we know that a positive definite matrix

is always invertible [30]. From the properties above, we just

need to prove that No is positive definite. Let v 6= 0 be an

arbitrary non-zero vector. Then we calculate the quadratic form

v⊤Nov =
(

Cn⊤
1 v
)2

+
(

Cn⊤
2 v
)2

+2
(

Cn⊤
3 v
)2

+2
(

Cn⊤
4 v
)2
≥ 0. (38)

We assume that v⊤Nov = 0, which means Cn⊤
i v = 0 for

i = {1,2,3,4}. However, since any three of these four normal

vectors are linearly independent, we get a contradiction that, for

example, [Cn1,
Cn2,

Cn3]
⊤v = 0 if and only if v = 0. Thus,

we can conclude that

v⊤Nov =
(

Cn⊤
1 v
)2

+
(

Cn⊤
2 v
)2

+2
(

Cn⊤
3 v
)2

+2
(

Cn⊤
4 v
)2

> 0. (39)

Thus, matrix No is positive definite and always invertible. �
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